

A Systematic literature review of Machine learning models for intrusion detection for

smart utility meters; a systematic literature review

Nafuye Ivan¹: Department of computer science, Maseno University, Kenya; <u>inafuye@gmail.com</u> Dr Lillian D Wanzare²: Department of computer science, maseno university,kenya; <u>ldwanzare@maseno.ac.ke</u>

Dr. James Obuhuma^{3:} jobuhuma@maseno.ac.ke, Ikwap flavia Agatha⁴; flav.agatha@gmail.com

Abstract: This systematic literature review examines the use of machine learning algorithms in smart meter applications. Smart meters are digital devices that record and transmit energy consumption data to utilities for billing, monitoring, and optimization purposes. Machine learning algorithms have been applied to smart meters to improve energy efficiency, detect anomalies, and forecast energy demand. This review analyses over 58 studies papers published between 2008 and 2023 and categorizes the machine learning algorithms based on their application and performance metrics, the features and datasets. The study finds that clustering and regression algorithms are commonly used for anomaly detection and demand forecasting, respectively with these being the support vector machines and the decision trees, while deep learning algorithms show promise for improving accuracy and interpretability. The review also identifies challenges in data and feature quality, privacy, and scalability that need to be addressed for successful deployment of machine learning in smart metering. Overall, this study provides a comprehensive overview of the state-of-the-art machine learning techniques in smart meters and suggests future research directions for advancing the field.

Introduction

The number of devices connecting to the Internet has been growing at a breath-taking pace over the past decades. From two billion in 2006, it reached 200 billion in 2020 according to a report published by Kaspersky in 2022.

Development and advancement of new technological innovation, concepts such as of "Smart utility meters" have emerged as a means to achieve more efficient and sustainable cities. Utility companies worldwide have begun deploying smart meters to service residential, commercial and industrial markets. Smart meters deliver a range of benefits including lower operational and capital expenses, support for new services, and improved operational control.

If electricity supply is controlled by devices connected to communications infrastructure, then there is the possibility that hackers could disrupt the electricity system. Anderson and Fuloria wrote an article about why we should think carefully about the security problems of smart meters. Another security expert, Krebs, reported that the FBI had seen a very large amount of electricity theft in Puerto Rico after smart meters were installed. So, there are some problems with security.

In recent years, there has been an increased interest in exploring machine learning for enhancing the detection quality of IDSs, however, ensuring security and privacy for the IoT devices is a nontrivial challenge due to their limitless computational capabilities, which is challenging for traditional security mechanisms. This has made them susceptible to wide range of cyberattacks, such as data leakage, spoofing, DoS / DDoS and with smart utility meters brought into play, it is even more certain there is a lot at stake. To get an overview of what has been done on the application of ML in smart utility meters especially with the anomaly-based approach, a systematic literature review (SLR) will be performed. A Systematic

Literature Review shows the potential gaps in a given research area and will guide who so ever wishes to do a new research study on this problem area. By following a methodology in SLR, all relevant studies are accessed from electronic databases, synthesized, and presented.

This study presents all the available literature published so far on the application of machine learning in smart utility meters and the general advanced metering infrastructure. In this study, I present my empirical results and responses to the research questions defined which were designed to help guide and shape this review.

This paper is organized as follows: a section explaining the background, another discusses the methodology used in this review, next presents the results. A section explaining the anomaly-based machine learning approaches in smart utility meters. A section presenting challenges and way forward.

2. Related work

There have not been so many systematic literature reviews conducted on the use of machine learning algorithms in smart meters. One such review by farivar et al examined the use of machine learning algorithms for demand response in smart grid systems. Their study identified several machine learning algorithms, including decision trees, support vector machines, and neural networks, that were used for demand response in smart meters. This review also highlighted the importance of data quality and privacy concerns in smart meter data analysis. Farivar et al. (2018)

In a paper by Alejandro Hernandez et al 2022, a systematic review of machine learning techniques related to local energy communities was carried out. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.

A systematic review of machine learning applications in the operation of smart distribution systems by Terezija Matijašević et al 2022, summarized the advantages and also the shortcomings in their comprehensive review of using machine learning based methods and algorithms in the planning and operation of smart, active distribution systems is provided. In addition to the already developed and presented applications, they identified the current research gap and proposed future research directions with machine learning applications.

Another systematic literature review published in 2019 by Zhang et al focused on the use of machine learning for energy forecasting in smart grids. The study analysed over 50 papers and identified several machine learning algorithms, including artificial neural networks, support vector machines, and random forests, being used for energy forecasting in smart meters. The review also highlighted the need for interpretability and transparency in machine learning models for energy forecasting.

However of all these, the most recent systematic literature review was by karmakar et al published in 2021 which was examining the use of machine learning algorithms for energy disaggregation in smart meters.

The study analysed over 60 papers and identified several machine learning algorithms, including convolutional neural networks, recurrent neural networks, and deep belief networks, that were being used for energy disaggregation in smart meters. The review also highlighted the need for benchmarking datasets and standardized evaluation metrics in energy disaggregation research. Karmakar et al. (2021)

All these systematic literature reviews mentioned above demonstrate the growing interest in the use of machine learning algorithms in smart meters. Further research is still needed and gap is widening each and every day in this exciting field. From these very studies there are a number of challenges still existing that need to be addressed especially relating to data quality, privacy, interpretability, and standardization.

3. Methodology

3.1. Review protocol

In order to conduct a deep analysis of software defect prediction, a Systematic Literature Review (SLR) was selected in this research. SLR collects the data from selected research studies to systematically deduce the results. SLR evaluates all the empirical research evidence to answer specific research questions (Carcary et al., 2018.)

It uses explicit criteria for deciding which studies will be included or excluded. This helps to minimize the authors' bias. SLR process consists of three phases (Boell et al., 2015): Planning, conducting and reporting the literature review. In the planning phase, a review protocol is developed. It defines the research questions, search strategy, inclusion and exclusion criteria for selecting relevant studies. Quality assessment, data extraction and data synthesis are applied to the selected primary studies in the conducting phase. The results are presented in the reporting phase of the literature review. SLR steps are shown in Figure 1.

The review has been done using the well-known review guidelines provided by (Kitchenham, 2012). Firstly, the research questions are defined. When research questions are ready, databases are used to select the relevant studies. The databases that were used in this study are Google Scholar, Semantic Scholar, ResearchGate, ScienceOpen, Academic Search, and SpringerLink.

A. phase one: planning the review

In the review protocol, the first step is to identify the purpose of the research. Then, research questions are formed to support the objective of the SLR. Then, the data are extracted based on the identified inclusion and exclusion criteria.

3.2. Research questions

This SLR aims to get insight into what studies have been published in the domain of anomaly detection, ML, intrusion detection and smart utility meters. To understand the problem, studies have been analysed from several dimensions. For this SLR study, the following four research questions (RQs) have been defined.

• RQ1- Which machine learning algorithms have been used for intrusion detection especially in smart meters?

• RQ2- Which are the major exiting features for intrusion detection especially in smart meter?

- RQ3- What datasets have been used in ML intrusion detection in smart meters?
- RQ4- How are machine learning models being evaluated?

3.3. Search strategy

The searching is done by narrowing down to the basic concepts that are relevant for the scope of this review. Machine learning and intrusion detection systems have many application fields, which means that there are a lot of published studies that are probably not in the scope of this review article. The basic searching is done by an automated search. The starting input for the search was "machine learning anomaly IDS" and "smart meters". Articles were retrieved, and abstracts were read to find the synonyms of the keywords.

The search was performed in six databases and in all these the above key word searches where performed to each of these. After the exclusion criteria were applied, and all the results were processed, and a more complex search string was built in order to avoid missing relevant studies. This final search strings were (("machine learning) or "deep learning" AND "algorithms" AND ("smart meters" OR "intrusion detection systems"). After executing this search string, approximately 300 studies were retrieved.

A specific description of the search strings per databases are provided as follows:

From each of all the above mentioned search engines, the keys words where run in each of these and there after different extensions of .pdf, .doc where appended so as to fine tune the results to these formats. For each of the returned documents the title, abstract, keywords and algorithms used where captured so as to further extract our table of comparative study on works done so far.

3.4. Inclusion and Exclusion criteria

According to SLR, we should define a set of rules for choosing the most relevant studies. The inclusion and exclusion criteria are applied for selecting the primary studies. To exclude irrelevant studies, the studies were analysed and graded based on exclusion criteria to set the boundaries for this review. Table 3 shows the details of the inclusion and exclusion criteria.

Table 1: Inclusion and exclusion criteria

Inclusion	a criteria
√	Studies present an empirical study.
\checkmark	Studies compare the performance of machine learning models.
\checkmark	Studies published either in journals or conferences.
\checkmark	studies concentrated on models in smart meters
Exclusion	n criteria
×	Publication is not related to the computing domain, nor is it related to machine learning nor intrusion detection
	systems nor smart utility meters.
×	Publication is not written in English
×	Publication that is a duplicate or already retrieved from another database
×	Full text of the publication is not available
×	Publication has been published before 2008

B. phase two: the second stage is conducting the review

Select Primary Studies

Figure 2 shows the overview of identified and remained studies after each step in the search process. In total, 90 primary studies are retrieved from the selected repositories based on the defined search string. After removing the duplicated studies, 44 have remained. Then the irrelevant studies are discarded based on reading the details of each study; four studies are discarded, leaving 40 primary studies to be evaluated in this SLR.

Quality Assessment

The quality assessment ensures the efficiency of the studies and is focused on extracting the studies that have sufficient information for answering the predefined research questions. We have defined a set of quality criteria to be applied to the selected primary studies. The quality criteria are shown in Table 2. Each

quality criteria must be answered using the options "Yes" or "No". The answer "Yes" represents value 1 and "No" represents value 0. We accumulate the values of all answers for each primary study. The sum is shown in Table 3. The primary study that reaches a sum lower than 75% will be excluded. After applying quality assessment on my 58 primary studies, all studies are included for the data extraction.

Data Extraction

The purpose of data extraction is to extract the data from the primary studies to answer the predefined research questions. The data extraction consists of three steps: The first step is concentrated on general information about the studies such as authors, title and publication type and publication year. The second step is focused on the implementation of machine learning algorithms, features, datasets and evaluation metrics. The third step extracts information about the empirical study and the final results of the models. Table 4 shows the characteristics that are used to answer the research questions. Table 5 shows the relationship between the primary studies and research questions, it checks if the selected studies answer the research questions or not.

When conducting the review, the publications were selected by going through all the databases. The data was extracted, which means that their information regarding authors, year of publication, type of publication, and more information regarding the research questions were stored. After all the necessary data was extracted correctly, the data was summarised and tabulated in a table to provide an overview of the related papers published.

Table 2: Quality criteria

No	Quality criteria	description
Q1	Is machine learning model clearly reported	Machine learning model must be well stated
Q2	Are features clearly mentioned	Features must be well mentioned
Q3	Is used dataset clearly mentioned	Dataset must be well mentioned
Q4	Are evaluation metrics well mentioned	Evaluation metrics is captured

Table 3: Results of quality criteria for primary studies

Study	RQ1	RQ2	RQ3	RQ4	sum
St1 Philokypros Ioulianou 2017	1	1	1	1	4
st2 Chih-Che Sun et al 2020	1	1	1	1	4
St3 Mustafa Amir Faisal et al 2016	1	1	1	1	4
St4 Dipanjan Das Roy and Dongwan Shin 2019	1	1	1	1	4
St5 Dejan Radovanovic etal 2022	1	1	1	1	4
St6 Mueen Uddin etal 2012	1	1	1	1	4
St7 Morteza Behniafar etal 2018	1	1	1	0	3
St8 Priti Prabhakar et al 2022	1	1	1	1	4
St9 Farid Molazem Tabrizi et al 2014	1	1	1	1	4
St10 Mausumi Das Nath et al 2020	1	1	1	1	4
St11 Tara Salman et al 2017	1	1	1	1	4
St12 Nebrase Elmrabit et al 2020	1	1	1	1	4
St13 Liu et. al 2014	1	1	1	1	4
St14 Lyu et. al 2017	1	0	1	1	3
St15 Summerville et. Al 2015	1	0	1	1	3
St16 Fu et al 2012	1	1	1	1	4
St17 Tsitsiroudi et al 2016	1	1	0	1	3
St18 Bostani et al	1	1	1	1	4
St19 Trilles et al 2016	1	1	1	1	4
St20 Hoang et al 2018	1	1	1	1	4
St21 Zissis et al 2017	1	1	0	0	2
St22 Sedjelmaci et al 2016	1	1	1	1	4
St23 Granjal et al 2018	1	1	0	1	3
<i>St24 Domb et al 2017</i>	1	0	1	1	3
St25 Sedjelmaci et. al 2017	1	0	1	1	3
St26 Rajesh Kumar Gunupudi et al 2017	1	1	1	1	4

St27 Pongle et al 2015		1	1	1	1	4
St28 Trilles et al 2015		1	1	1	1	4
St29 Moshtaghi et al 2017		1	1	1	1	4
St30 Yu et al 2017		1	1	1	1	4
St31 Zhao et al 2017		1	1	1	1	4
St32 Tama et al 2018		1	1	1	1	4
St33 Briana Arrington et al 2016		1	1	1	1	4
St34 Deris Stiawan et al 2011		1	1	1	0	3
St35 Yogitha et. al 2008		1	0	1	1	3
St36 Wenke Lee et. al 2011		1	1	1	0	3
St37 Eleazar, Matthew et. al 2008		1	1	1	1	4
St38 Archika Jain, et. al 2022		1	1	0	1	3
St39 Sushil Kumar Chaturvedi, et. al 2017		1	0	1	1	3
St40 Omprakash Chandrakar, et. al 2014		1	1	1	1	4
St41 A.R. Jakhale, et. al 2018		1	1	1	0	3
St42 R. Venkatesan, et al 2019		1	1	0	1	3
St43 Abhilasha A Sayar, et.al 2014		1	1	1	0	3
St44 S. S. Pawar et., al		1	0	1	1	3
St45 AnnkitaPatel,Risha Tiwari 2014		1	1	1	1	4
St46 Yogita B.Bhavsar& Kalyani C. Waghmare		1	1	1	1	4
St47 Rowayda A.Sadek, et al 2013		1	1	1	1	4
St48 Ahemd A Elngar, Dowalt, Fayed		1	1	1	1	4
St49 HeshamAltwaijry, Saeed Algarny 2012		1	1	1	1	4
St50 Tao Peng, WanliZuo 2009		1	1	1	1	4
St51 Wanke Lee, Salvotore J Stolfa 2008		1	1	1	1	4
St52 Renuka DeviThanasekaran 2011		1	1	1	1	4
St53 G.C. Tjhai et al 2010		1	0	1	1	3
St54 Bo Peng et al 2016		1	1	1	1	4
St 55 Shikha Singh et al 2018		1	1	1	1	4
St56 J. Viinikka et al 2009		1	1	1	1	4
St57 Revathi S et al 2013		1	1	1	1	4
St58 Ibrahim Salim.M et al 2016		1	1	1	1	4
	and the second se					

Table 4: Data extraction characteristics mapped to research questions

Characteristic	Research question
Authors, publication, title, type, year	General
Machine learning algorithms	RQ1
Features	RQ2
Datasets	RQ3
Evaluation metrics	RQ4

Table 5: The relationship between the primary studies and research questions

Study	RQ1	RQ2	RQ3	RQ4
St1	✓	\checkmark	✓	\checkmark
St2	\checkmark	\checkmark	\checkmark	\checkmark
St3	\checkmark	\checkmark	\checkmark	\checkmark
St4	\checkmark	\checkmark	\checkmark	\checkmark
St5	\checkmark	\checkmark	\checkmark	\checkmark
St6	\checkmark	\checkmark	\checkmark	\checkmark
St7	\checkmark	\checkmark	\checkmark	×
St8	\checkmark	\checkmark	\checkmark	\checkmark
St9	\checkmark	\checkmark	\checkmark	\checkmark
St10	\checkmark	\checkmark	\checkmark	\checkmark
St11	\checkmark	\checkmark	\checkmark	\checkmark
St12	\checkmark	\checkmark	\checkmark	\checkmark
St13	\checkmark	\checkmark	\checkmark	\checkmark
St14	\checkmark	\checkmark	\checkmark	\checkmark
St15	\checkmark	\checkmark	\checkmark	\checkmark
St16	\checkmark	\checkmark	\checkmark	\checkmark
St17	\checkmark	\checkmark	\checkmark	\checkmark
St18	\checkmark	\checkmark	\checkmark	\checkmark

Planning phase

Fig. 1: Steps when conducting the SLR

Fig. 2: search and selection processes of the SLR study.

Data Synthesis

The goal of data synthesis is to collect the data together from the selected primary studies to answer the research questions, with the aim of aggregating the evidence. There are many types of strategies to synthesize the data. In this study we used the narrative synthesis strategy. In narrative synthesis, visualization of the results is presented with the support of adding text to explain the context. In this SLR, the data are presented in a manner compatible with the research questions. The results of the primary studies are presented by using tables, bar charts, pie charts and column charts. The results are shown in section III.

Phase Three: Results

In this section, the authors present and discuss briefly the results of the SLR study. For each of the RQs, the authors instigate them with a summary of the most noteworthy results, a discussion about the most relevant facets, and, based on them, a suggestion of some explanatory hypotheses.

A. Machine learning algorithms

Security before machine learning was an uphill task that left many questions unanswered in all technology fields. Machine learning has shown great potential in intrusion detection systems, where it can learn to identify malicious network traffic patterns and anomalous behaviors that are indicative of attacks. Over time a number of machine learning algorithms have been proposed, from this study a number of these crisscross all domains and include:

Random Forests, K-Nearest Neighbors, Naive Bayes, Principal Component Analysis, Feature selection, kmeans, Massive online analysis, Clustering, Bayesian, Decision tree both c 4.5 &J48, Neural networks, Convolutional neural networks (CNN), Recurrent neural networks (RNN), Median absolute deviation (MAD), Hidden markov model etc

Different machine learning algorithms work in different ways, but most involve some form of mathematical optimization or pattern recognition.

Machine learning models can play a crucial role in smart meter technology by analyzing the vast amounts of data generated by these devices. Machine learning algorithms in smart meters are typically trained using historical data on energy consumption and other relevant factors.

In this SLR, there are 58 primary studies reviewed using different machine learning models. Table 7 and figure 5 show all the machine learning algorithms that have each been used in my primary studies. Figure 4 shows the number of the studies using each machine learning algorithm captured. In addition the percentage on use of each model is shown in Fig. 6. St7 by Morteza Behniafar etal 2018 has the highest

number of eleven of algorithms cited. Furthermore most of the studies have used within a range of 1-4 algorithms on average in their studies as seen in figure 5

B. Features

Feature selection is the process of selecting a subset of relevant features (or variables) that can be used to build an effective machine learning model. In other words, feature selection involves identifying the most important features that contribute the most to the predictive power of the model while discarding the redundant or irrelevant features. Feature selection is a powerful technique in machine learning that can improve the performance, efficiency, and interpretability of models. A number of features were used in the primary studies to mention but а few these included: Connection/failed/ attempt/login/unknown/modification, Packet burst/service type, Ram, CPU, memory, disk usage/demand, Service, time/ during/connection duration/volume, Source/destination IP. However predominantly most of the smart meter models incorporated some of these with Total energy consumption, maximum energy consumption, energy consumption, hourly energy consumption.

As shown in Fig 7, thirty studies used the packet based features such as source and destination IP address among other features. Most of the studies use a combination of these features. In the smart meters the studies predominantly used more of electricity consumption features that is study St (5, 8, 9, 41, and 19). From our primary studies, In the context of network packet analysis, some common features that are used for machine learning include packet size, source and destination IP addresses, port numbers, packet type (e.g., TCP, UDP), and payload content. However, the specific features selected will depend on the specific use case and the machine learning algorithm being used.

c. Datasets

Dataset is a data collection that is used to train and test machine learning models. A dataset typically consists of two parts: the features and the target variable. In this SLR, 58 primary studies are analyzed to find which datasets are used in them. Table 6 shows the details of the datasets used for each study. There after we proceed to calculate frequency of use of each of the cited datasets from the primary studies. Other than the generalized intrusion detection datasets and those of the IOT, a lot of attention needs to be paid to the real environment datasets of respective applicability. There is no standard dataset to be used in the models, because each organization has its own dataset.

As shown in Fig. 9, most of the studies use one dataset and then a hand full few of studies used two and three datasets, only one study St 40 cited 6 of these and others did not specify datasets used. From table 6 it can be noted that the original KDD cup of 1999 had the highest number of use with 21 studies. The KDD Cup 1999 is a well-known dataset used in the field of network intrusion detection. The KDD Cup 1999 dataset has become a benchmark dataset for intrusion detection and is often used as a standard reference in research papers and publications. The dataset includes network traffic data collected over nine weeks from a simulated network environment, including both normal and malicious traffic. The malicious traffic includes several types of attacks, such as denial-of-service attacks, probing attacks, and user-to-root attacks. Following the order from the KDD cup 1999 above, the other studies used the following datasets: NLS-KDD, IOT-23,IOT dataset-BA IOT, Real world IOT, UNSW-NB15, DARPA, Smart meter live data, Other network traffic datasets, Custom datasets, Did not use specific dataset, CICIDS 2017, Kyota 2006. Figure 9 shows the frequency of studies using a given dataset in the primary studies.

D. Evaluation Metrics

Evaluation metrics are measures used to assess the performance of machine learning models. These metrics can help determine how well a model is performing and guide further improvements. It is important to select appropriate evaluation metrics that are relevant to the specific problem being solved. Main metrics according to Li et al., 2018 and Tantithamthavorn et al., 2018 are Precision, Recall/DR, F-measure and Area under the Curve (AUC). When comparing the proposed models with the other selected baseline models, other than the above metrics studies used detection rate, accuracy, false positive, true negative, true positive, execution time, alert rates and a few did not clearly mention of how evaluation was done. Most of the studies applied Recall or Detection rate and accuracy. The detection rate or recall is an important performance metric in machine learning, especially in applications where the cost of missing a positive instance is high. For example, in this case intrusion systems, missing an attack could have serious consequences for the system and users. Therefore, a high detection rate (or recall) is desired to minimize false negatives. Accuracy on the other hand is a commonly used performance metric that measures the overall correctness of the model's predictions. The used metrics and their results are shown in Table 8. Fig. 10 also shows percentage of use of an evaluation metrics. All the used evaluation metrics are captured and shown in the above mentioned table and figure inclusive even those that did not clearly depict what was used. From table 8, the best detection rate or recall rate is 99.95 and the accuracy is 99.89.

Fig 5: Number of algorithms used in each primary study

Fig 6: Percentage of studies using a given algorithm

Fig 7: Number of studies using a given feature set

Fig 11: distribution of papers over the past 15 years

study	Dataset
St1 Philokypros Ioulianou 2017	NSL-KDD Dataset
st2 Chih-Che Sun et al 2020	NS-3 simulation data exchanging
St3 Mustafa Amir Faisal et al 2016	KDD Cup 1999
St4 Dipanjan Das Roy and Dongwan Shin 201	9 smart grid network traffic from NS-3 network simulator
St5 Dejan Radovanovic etal 2022	dataset of smart meter readings collected from 1,200 households in the Netherlands
St6 Mueen Uddin etal 2012	network traffic generated by the DARPA Intrusion Detection Evaluation (IDE) program
St7 Morteza Behniafar etal 2018 St8 Priti Prabhakar et al 2022	CICIDS2017 dataset, the IoT-23 dataset, and the N-BaIoT dataset real-world dataset collected from a smart metering infrastructure installed
St9 Farid Molazem Tabrizi and Karthik Pattabi 2014	raman synthetic dataset generated using the simulator for the Open Automated Demand Response (OpenADR) standard real-world dataset collected from a smart metering infrastructure installed in a residential area
St10 Mausumi Das Nath and Tapalina Bhattasali	i 2020 KDD Cup 1999 dataset, the NSL-KDD dataset, and the UNSW- NB15 dataset
St11 Tara Salman et al 2017	synthetic dataset from CloudSim simulator, real-world dataset from a multi-cloud environment consisting of Amazon Web Services and Microsoft Azure
St12 Nebrase Elmrabit et al 2020 St13 Liu et. al 2014	KDD Cup 1999 dataset, DARPA 1998 synthetic dataset generated using the DARPA Intrusion Detection Evaluation Program (IDEVAL) dataset
St14 Lyu et. al 2017	KDD Cup 1999 dataset custom dataset collected from a real-world IoT network
St15 Summerville et. Al 2015	KDD Cup 1999 dataset, the UNSW-NB15 dataset, and a custom dataset collected from a real-world IoT network
St16 Fuet al 2012	real-world IoT network and the KDD Cup 1999 dataset
St17 Tsitsiroudi et al 2016	a simulation environment to generate synthetic datasets with varying numbers of nodes, network topologies, and wormhole configurations.
St18 Bostani et al St19 Trilles et al. 2016	KDD Cup 1999 dataset and the IoT dataset
Sily Trace er al 2010	<i>quality dataset containing water quality data, and (3) a smart building dataset containing energy consumption data</i>
St20 Hoang et al 2018	dataset of network traffic
St21 Zissis et al 2017	did not use a specific dataset in the paper. Instead, they proposed a framework for intelligent security on the edge of the cloud that could be applied to any network environment
St22 Sedjelmaci et al 2016	dataset of network traffic generated by IoT devices, which was obtained from a public dataset called the IoT-23 dataset
St23 Granjal et al 2018	authors did not use a specific dataset in the paper. Instead, they proposed an intrusion detection and prevention framework that could be applied to any CoAP(WSN
St24 Domb et al 2017 St25 Sedjelmaci et. al 2017	IoT-23 dataset. did not use a specific

Table 6: Used datasets in primary studies

St26	Rajesh Kumar Gunupudi et al 2017	KDDCup99 dataset, NSL-KDD dataset, and UNSW-NB15 dataset
St27	Pongle et al 2015	network traffic data generated by simulating IoT devices and an
St28	Trilles et al 2015	custom datase which consisted of simulated network traffic generated by a DDoS attack tool
St29	Moshtaghi et al 2017	Real-world datasets in including network traffic data, system call data, and sensor data.
St30	Yu et al 2017	custom dataset which consisted of simulated sensor data from a network of IoT devices
St31	Zhao et al 2017	KDDCup99 dataset
St32	Tama et al 2018	UNSW-NB15 dataset
St33	Briana Arrington et al 2016	IoT-23 dataset
St34	Deris Stiawan et al 2011	real-world NIPS system in their laboratory environment
St35	Yogitha et. al 2008	microcalcification clusters and normal tissue regions
St36	Wenke Lee et. al 2011	KDD Cup 1999 dataset
St37	Eleazar, Matthew et. al 2008	NSL-KDD dataset
st38	S.A. Joshi, et. al 2022	No specific dataset
St39	Sushil Kumar Chaturvedi, et. al 2017	KDD Cup 1999 dataset
St40	Omprakash Chandrakar, et. al 2014	NSL-KDD dataset,KDDCup'99 dataset,UNSW-NB15 dataset,CICIDS2017 dataset,DARPA1998 dataset,Kyoto 2006
St41	A.R. Jakhale, et. al 2018	No specific datasets
St42	R. Venkatesan, et al 2019	No data set
St43	Abhilasha A Sayar, et.al 2014	No data set
St44	S. S. Pawar et., al	KDD Cup 1999
St45	AnnkitaPatel,Risha Tiwari 2014	KDD Cup 1999 dataset and the NSL-KDD dataset
St46	Yogita B.Bhavsar& Kalyani C. Waghmare	KDD Cup 1999 dataset
S+17	Powayda A Sadak M. Sami Soliman & Hagar S	KDD Cup 1000 datasat
Elsav	ed 2013	KDD Cup 1999 addusel
St48	Ahemd A Elngar, Dowalt, Fayed	KDD Cup 1999 dataset
St49	HeshamAltwaijry, Saeed Algarny 2012	NSL-KDD dataset
St50	Tao Peng, WanliZuo 2009	KDD Cup 1999 dataset
St51	Wanke Lee, Salvotore J Stolfa 2008	dataset of UNIX process accounting data from a large commercial network
St52	Renuka DeviThanasekaran 2011	KDD Cup 1999 dataset
St53	G.C. Tjhai et al 2010	real-world industrial control system
St54 St55	Yogita B et al 2013 WenkeLee et al 2008	KDDCup99 dataset DARPA 1998 dataset
St56	J. Viinikka et al 2009	real-world dataset collected from a large enterprise network
2720		
St57 St58	Revathi S et al 2013 Ibrahim Salim.M et al 2016	NSLKDD dataset KDDCup99 dataset

Table 7: Machine learning model and its use in the primary studies

) I	5
Algorithm	Study	
Feature selection	St (1,16,52)	
Svm	St (2,7,12,17,1	18,19,21,27,31,35,36,38,40,41,44,45,46,50)
k-means	St (2,11,20,26	,48,53)

St (3)
St (4,7,10,12,19,32,37,38,40,45,57)
St (5,16,36,39,41,51)
St (38,7)
St (7,12,37,38,41,44,10,40,57)
St (7,12,15,19,27,36,37,38,39,40,41,44,45,48,50,51,55,57)
St (7,19,39,43,47,51,53)
St (7,15,42)
St (42,7,22,30)
St (8)
St (9)
St (10,38,40,41,43,52)
St (18)
St (20,31,30)
St (37,40,45,57)
St (32)
St (33)
St (43,22)
St (56)

Table 8: Evaluation results from each primary study

study	accur	DR	FPR	FA	Distributi	Precis	F1	Time	TN	MIA	ТР
St1 Philokypros Ioulianou 2017	acy X	99.6	0.3	X	on X	ion X	score	X	X	X	X
st2 Chih- Che Sun et al 2020	98.4	X	×	1.6	X	X	×	×	×	×	X
St3 Mustafa Amir Faisal et al 2016	X	97.7	×	1.06	×	×	×	X	X	X	X
St4 Dipanjan Das Roy and Dongwan Shin 2019	X	99.23	X	X	×	X	X	X	×	X	X
St5 Dejan Radovanovic etal 2022	×	×	×	X	4% for 25 & 1% for 100	X	×	×	×	×	X
St6 Mueen Uddin etal 2012	×	98.62	×	0.42	X	×	X	×	×	×	X
St7 Morteza Behniafar etal 2018	X	×	X	X	X	×	X	X	X	X	K
St8 Priti Prabhakar et al 2022	95.5	97.5	×	X	X	X	×	×	×	×	X
St9 Farid Molazem Tabrizi and Karthik Pattabiraman 2014	99	X	X	X	×	X	X	X	X	X	X

St10 Mausumi Das Nath and Tapalina Bhattasali 2020	97.8	99.5	X	X	X	X	X	X	X	X	X
St11 Tara Salman et al 2017	×	90	X	X	X	×	X	X	X	X	X
St12 Nebrase Elmrabit et al 2020	99.4	97.4	X	X	×	X	X	X	X	X	X
St13 Liu et. al 2014	X	91.7	X	X	×	96.8	X	×	X	×	X
St14 Lyu et. al 2017	X	94.1	X	×	×	95.2	X	X	X	X	×
St15 Summerville et. Al 2015	×	99.64	X	X	X	99.93	X	X	X	X	X
<i>St16 Fu et al</i> 2012	×	94.8	X	×	×	96.5	X	X	X	X	X
St17 Tsitsiroudi et al 2016	X	98.6	0.3	X	X	×	X	X	X	X	X
St18 Bostani et al	X	95.4	X	X	×	96.2	95.8	×	X	X	X
St19 Trilles et al 2016	X	88	X	X	×	94	91	X	X	X	X
St20 Hoang et al 2018	98	98	X	×	×	94	96	X	X	X	×
St21 Zissis et al 2017	X	X	X	X	X	×	×	X	×	X	X
St22 Sedjelmaci et al 2016	X	90	×	X	×	×	X	X	×	X	X
St23 Granjal et al 2018	94	×	×	X	X	×	×	×	×	×	X
<i>St24 Domb et al 2017</i>	96	X	X	X	X	X	X	20-30	×	X	×
St25 Sedjelmaci et. al 2017		97	3	X	X	×	X	X	X	X	X
St26 Rajesh Kumar Gunupudi et al 2017	X	X	X	X	X	X	Above 0.98	X	×	X	X
St27 Pongle et al 2015	×	×	×	X	×	×	×	×	X	×	94
St28 Trilles et al 2015	X	98	0.5	×	×	X	X	X	X	X	×
St29 Mo shtaghi et al	X	X	X	X	X	X	X	X	X	X	X
2017 St30 Yu et al 2017	×	X	0.0331	×	×	X	X	X	×	X	1.0
St31 Zhao et al 2017	X	99.51	X	X	X	X	X	X	X	X	X

St32 Tama et al 2018	97.62	99.6	×	X	×	X	×	×	X	×	×
St33 Briana Arrington et al 2016	X	99.95	X	X	X	X	X	X	X	X	X
St34 Deris Stiawan et al 2011	X	X	X	X	X	X	X	X	X	X	X
St35 Yogitha et. al 2008	×	96.25	×	X	X	X	×	×	X	×	×
St36 Wenke Lee et. al 2011	X	X	X	X	×	X	X	X	X	×	X
St37 Eleazar, Matthew et. al 2008	X	0.3	0.0005	X	X	X	X	X	X	X	X
st38 Archika Jain, et. al 2022	Btn 73.82- 99.74	X	X	X	X	X	X	X	X	X	X
St39 Sushil Kumar Chaturvedi, et. al 2017	X	X	X	X	X	X	X	X	X	×	X
St40 Omprakash Chandrakar, et. al 2014	Btn 95.6- 99.56	X	X	X	X	X	X	X	X	X	X
St41 A.R. Jakhale, et. al 2018	×	×	×	X	X	×	×	×	×	×	×
St42 R. Venkatesan, et al 2019	×	X	X	X	X	X	×	X	X	X	X
St43 Abhilasha A Sayar, et.al 2014	×	×	×	X	X	×	×	X	×	X	X
St44 S. S. Pawar et., al	×	99.98	0.007	×	×	X	X	X	X	×	×
St45 AnnkitaPatel,R isha Tiwari 2014	99.89	X	X	X	X	×	X	31.17 sec	X	×	X
St46 Yogita B.Bhavsar& Kalyani C. Waghmare	X	98.57	X	X	X	X	X	X	X	X	X
St47 Rowayda A.Sadek, M. Sami Soliman& Hagar S. Elsayed 2013	X	96.7	X	3	X	X	X	X	X	X	X
St48 Ahemd A Elngar,Dowalt, Fayed	X	98.2	X	×	X	X	X	0.18 sec	X	×	×
St49 HeshamAltwaij ry, Saeed Algarny 2012	X	93.0	X	X	X	X	X	X	99.7	X	X
St50 Tao Peng, WanliZuo 2009	X	97.2	X	0.75	X	X	X	X	X	X	X

St51 Wanke	99.1	×	1	0.6	×	×	×	×	×	×	×
Lee,Salvotore J											
Stolfa 2008											
St52 Renuka	×	×	×	0.081	×	×	×	46 sec	×	×	×
DeviThanaseka				2							
ran 2011											
St53 G.C.	×	96	×	78.8	×	×	×	×	×	×	×
Tjhai et al 2010											
St54 Bo Peng	×	×	×	×	×	×	×	×	×	0.0112	×
et al 2016										0	
St55 Shikha	×	×	×	×	X	×	×	43.9	×	×	×
Singh and								sec			
Angshul											
Majumdar											
2018											
St56 J.	×	×	X	×	0.2-0.3	×	×	X	×	×	×
Viinikka et al											
2009											
St57 Revathi S	71.1-	×	×	×	×	×	×	×	×	×	×
et al 2013	99.8										
St58 Ibrahim	80.14	78	21.83	×	x	×	×	×	×	×	×
Salim.M et al											
2016											

F. Number of Publications

In this SLR, 58 primary studies published on machine learning algorithms especially in the smart utility meters were selected. After analyzing the studies, we find that all studies have published between 2010 and 2023. Also, the number of studies is increased over the years. Figure 11 above shows the distribution of the studies over the years and figure 12 below shows the map of key word searches.

Fig 12: Key work map of the primary studies

Discussion

In this study, I have reviewed fifty eight primary studies on machine learning algorithms especially in smart utility meter intrusions that were published by 2008. This study also provides a summary of all algorithms used in machine learning, the various kinds of features more so those in smart meters, the datasets used in machine learning especially in networks and finally the findings in these studies and how the existing models are being evaluated. The primary data in this study is collected from all available research studies in the selected digital libraries. Machine learning is used to detect anomalies in energy consumption patterns that may indicate a malfunctioning meter or equipment. This can help to improve the accuracy of billing and reduce energy waste.

Following the predefined research questions in Section II, the first question is related to the machine learning algorithms used especially in smart meters. The SLR shows that though there is general use of most of the machine learning algorithms, in the smart meters the support vector machine and decision trees have more usage and this can be attributed to: known to be highly accurate and can achieve good performance in detecting attacks, both SVMs and decision trees can handle a wide range of input data types and can be applied to both supervised and unsupervised learning problems, both algorithms can be scaled up to handle large datasets and can be trained efficiently and this is the case with the enormous amount of data from these smart meters. However, use of medium absolute deviation (MAD), time series, hidden Markov and a few other machine learning models in smart meters was still challenging and this could be attributed to: these models can be more complex than simpler models like linear regression or decision trees, and may require more computational resources and expertise to implement and train, the performance of these models may not be significantly better than simpler models like decision trees or SVMs, and therefore may not be considered worth the added complexity.

The second question is related to the features that are mostly used in machine learning in the networks as well as in the smart meters. From the primary studies a number of features are available and exist when using machine learning and those that stood out were the packet based features such as source and destination among other packet features. In the smart meters it's these mentioned features alongside those that go hand in hand with the primary function of the smart which is energy consumption i.e (total, maximum, minimum, hourly and daily energy consumptions). Packet features are critical in smart meter machine learning algorithms because they provide information about the network traffic between the smart meters and the utility provider, which can be used to identify and detect anomalies or attacks.

By incorporating packet features into the analysis, machine learning algorithms can provide a more comprehensive view of the behavior of smart meter networks, which can help utilities to better manage energy supply and demand, and to detect and respond to potential security threats.

The third question is related to the datasets that are used in machine learning models. The KDD cup 1999 still remains the highly used dataset in most of the primary studies. The dataset has been widely used in the research community, which allows for more direct comparisons between different approaches and algorithms. However it does not include newer types of attacks and may not be representative of more modern network traffic patterns. Nonetheless, it remains a useful and widely used dataset for evaluating the effectiveness of machine learning algorithms for intrusion detection. There is also an emerging use of real environment data, as smart meters become more prevalent, there is a greater availability of real environment data for machine learning algorithms to train on. This makes it easier to collect and analyze large amounts

of data from a diverse range of households and businesses. Real environment data provides a more accurate representation of the actual energy usage patterns of households.

The fourth question is related to the evaluation metrics. These metrics are used to compare the model with other selected baseline models. Most of the primary studies have applied only one or two evaluation metrics. From these primary studies most of these used the Detection rate or recall metric. There was also a good use of accuracy and false positive. Detection rate or recall is a useful metric for evaluating the performance of machine learning models, particularly in scenarios where correctly identifying positive samples is crucial and the dataset is imbalanced.

In this SLR, a number of challenges related to ML algorithms in smart meters and propose the practices that can be performed to overcome these challenges.

Smart meters have the potential to revolutionize the way we consume and manage energy, but they also present several challenges when it comes to machine learning algorithms. As the number of smart meters grows, it becomes increasingly challenging to scale up machine learning algorithms to handle the increased data volume. Machine learning algorithms need to be designed to be scalable and efficient to handle the increasing amount of data generated by smart meters.

Many machine learning algorithms are complex and difficult to interpret, making it challenging to understand how they arrive at their decisions. Machine learning algorithms require access to sensitive data, raising privacy and security concerns. It is crucial to design machine learning systems that protect data privacy and prevent unauthorized access.

Machine learning algorithms can be computationally intensive and may not scale well to large datasets or distributed systems. Scalability is essential for the practical application of machine learning in real-world settings.

Machine learning algorithms require large amounts of high-quality data to train and build models. Poor quality or insufficient data can lead to inaccurate and unreliable models. Additionally, the data used for training must be representative of the real-world attacks that the IDS is expected to detect.

The selection of appropriate features is critical in intrusion detection. Machine learning algorithms require a set of relevant features to detect attacks accurately. However, the selection of the appropriate features can be challenging, as it requires an understanding of the attack patterns and the data available.

Study Limitations

This SLR has some limitations. First, I have used the predefined search string to find the relevant primary studies on machine learning in smart meters. Second, the primary studies are retrieved based on the selected digital libraries which may miss out on other library contributions. Moreover, English papers are selected only. Thirdly a time bound had been put on these papers to capture only those in the past fifteen years.

Conclusion and Future Work

This SLR was intended for identifying and analyzing the algorithms, datasets, features and evaluation metrics used in machine learning more so in the smart meters. A selection criteria was adopted for the selection of the primary studies used in this SLR. Out of all the journal, fifty eight primary studies were selected to be evaluated and extraction of information vital for this study. Extraction from the primary

studies was based on clearly stated objectives four in number. And after all the steps of conducting this SLR, below are the summarized main findings:

- The KDD cup of 1999 still remains the most used dataset in the selected primary studies of which out of the twelve used dataset it had a percentage of 27.6% which is the highest.
- Of all the twenty two algorithms under study, the SVM and decision tree each had the highest percentage of frequency of use each with a 16.5% which are the highest.
- a number of features exist for machine learning but the packet based are the highest used with the percentage of 30% while the smart meters the energy features are equally highly used with a percentage of 5%.
- The recall or detection rate and accuracy evaluation are the mostly used evaluation metrics each with a percentage of 33% and 17% respectively.
- Primary studies summarized table is shown below in Table 9. Also, the map of the primary studies that
 is designed by VOS viewer tool is shown in figure 12 above and this shows text mining functionality
 that can be used to construct and visualize co-occurrence networks of important terms extracted from
 a body of scientific literature (VOSviewer, 2020)"

st u d	Retrieved	Refere nce	title	Algorithm	Dataset	features	Findings & resolved task	Detection techniques	Evaluatio n metrics
st 1	Institute of Electrical and Electronics Engineers	(Ioulia nou, 2017.)	Smart Network- based Intrusion Detection System (SNIDS) for Advanced Metering Infrastructure	feature selection, filter, wrapper and embedded,	NSL-KDD Dataset, 2015	Network Traffic Data Meter Data Real-time Alerting	combine data from multiple sources, use machine learning algorithms and anomaly detection techniques, and provide real- time alerting to be effective in detecting and preventing intrusions in the AMI network	use threat intelligence feeds to identify any known threats or attack signatures	DR is 99.6 FP is 0.3
st 2	Institute of Electrical and Electronics Engineers	(Sun et al., 2020.)	Intrusion Detection for Cybersecurity of Smart Meters	Support Vector Machine (SVM) One-Class SVM (OC- SVM) K-Means clustering algorithm	NS-3 simulation data exchanging	Sensor Report, Connection Attempt, Unknown Connection , Packet Burst, Firmware Modification, Unknown Application, RAM & cpu Demanding,	SVM classifier exhibits good performance with kernel functions. Compared to NN algorithms, SVM has an advantage in the shorter training time. This feature allows the proposed SVM model to be frequently updated to maintain a high level of detection accuracy.	Based on the TFPG technique, the pattern recognition algorithm is able to calculate the similarity index	detection rate of 98.4% and a false alarm rate of 1.6%
St 3	Institute of Electrical and Electronics Engineers	(Faisal et al., 2014.)	Data Stream- based Intrusion Detection System for Advanced Metering Infrastructure in Smart Grid: A Feasibility Study	data stream mining algorithms Massive Online Analysis (MOA) Hoeffding Tree	KDD Cup 1999	service duration time, data size to/from source/destination, various error rates	observed that some algorithms that uses very minimal amount of computing resources and offers moderate level of accuracy can potentially be used for the smart meter IDS. On the other hand, the algorithms that requires more computing resources and also offers higher accuracy levels can be useful for the IDSs in data concentrators and AMI headends	suggests using seven massive online analysis algorithms with the hoeffding tree for intrusion. This can help identify abnormal behavior in smart meters	detection rate of 97.7% and a false alarm rate of 1.06%

Table 9: comparative review and summary of primary studies

St 4	Institute of Electrical and Electronics Engineers	(Roy et al., 2019.)	Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models	Random Forest	smart grid network traffic from NS-3 network simulator	packet count, packet size, packet rate, and packet entropy.	The dataset used included normal traffic as well as several types of attacks, such as Denial-of-Service (DoS) attacks and spoofing attacks. resampling techniques such as oversampling and undersampling were used to handle imbalanced attack types in the dataset. These techniques helped balance the dataset and improve the accuracy of the RF algorithm.	RF algorithm to classify normal and abnormal network traffic. The RF algorithm can handle imbalanced datasets and identify anomaly	detection rate of 99.23%
St 5	Proceedings of the 11th DACH+ Conference on Energy Informatics	(Rado vanovi c et al., 2022)	How unique is weekly smart meter data	Clustering algorithm	dataset of smart meter readings collected from 1,200 households in the Netherlands	total energy consumption, the maximum energy consumption, and the energy consumption	The paper proposes a metric for quantifying the uniqueness of smart meter readings based on the clustering results. The metric is based on the probability of a random household being assigned to the same cluster as a specific household based on its energy consumption patterns.	K-Means algorithm to identify groups of smart meters with similar energy consumption patterns	Distributi on of 4% and 1% for a 25 and a 100- household -sized set
St 6	Journal of Applied Sciences Research	(Uddi n et al., 2013)	Signature- based Multi- Layer Distributed Intrusion Detection System using Mobile Agents.	signature detection algorithms	network traffic generated by the DARPA Intrusion Detection Evaluation (IDE) program	packet size, packet rate, and packet entropy	The paper proposes a multi- layer signature-based model that consists of several layers of signature detection algorithms. Each layer is responsible for detecting a specific type of attack, and the output of each layer is fed as input to the next layer.	paper proposes a method for generating signatures for each layer of the model	detection rate of 98.62% and a low false alarm rate of 0.42%
St 7	The ISC Int'l Journal of Information Security	(Behni afar et al., 2018)	A Survey of Anomaly Detection Approaches in Internet of Things	(mean/varian ce) Bayesian, (SVM, KNN, Decision trees, Random Forest, Neural Networks) Deep learning (autoencoders	CICIDS2017 dataset, the IoT-23 dataset, and the N-BaIoT dataset	Network-based features include packet size, packet inter-arrival time, packet length, and packet direction. Host-based features include system call traces,	the survey provides a comprehensive overview of the various anomaly detection approaches for IoT systems	Hybrid methods that combine multiple approaches were used	N/A

				, Convolutional Neural Networks, Recurrent Neural Networks) Hybrid methods		file system logs, and registry keys. Application-based features include login attempts, error messages, and HTTP status codes.			
St 8	Hindawi Security and Communicati on Networks	(Prabh akar et al., 2022.)	Cyber Security of Smart Metering Infrastructure Using (MAD)	Median Absolute Deviation (MAD)	real-world dataset collected from a smart metering infrastructure installed	hourly energy consumption data	The authors used the real- world dataset collected from a smart metering infrastructure installed in a residential area to develop a cyber security smart meter using MAD	MAD measures variability of a dataset and is useful for identifying outliers	Detect accuracy of 97.5% and replay attacks with an accuracy of 95.5%
St 9	researchgate	(Tabri zi et al., 2014.)	A Model- Based Intrusion Detection System for Smart Meters	Hidden Markov Model (HMM)	synthetic dataset generated using the simulator for the Open Automated Demand Response (OpenADR) standard real-world dataset collected from a smart metering infrastructure installed in a residential area	energy consumption data metadata such as the time of day and day of the week	The authors used a model- based approach that involves building a mathematical model of the system and using it to detect anomalies in the data. The authors also considered the presence of events such as power outages or maintenance as part of the model.	Specifically, they used a Hidden Markov Model (HMM) to model the normal behaviour of the smart meter and detect deviations from this behaviour	Detection accuracy of over 99%.
St 1 0	Azerbaijan Journal of High- Performance Computing	(Das Nath et al., 2020)	Anomaly Detection Using Machine Learning Approaches	K-Nearest Neighbor, Support Vector Machines, Random	KDD Cup 1999 dataset, the NSL-KDD dataset, and the UNSW- NB15 dataset	network-based features such as packet size, protocol type, and duration,	the proposed machine learning-based approach showed promising results in detecting anomalies in network traffic data.	using ML algorithms for anomaly detection provides a new perspective in the field	Detection accuracy of 99.5%, probing attacks with an

				Forest, and Artificial Neural Networks (ANNs)		host-based features such as system call traces and file access patterns			accuracy of 97.8%, and U2R attacks with an accuracy of 95.3%,
St 1 1	Institute of Electrical and Electronics Engineers (ieee)	(Salm an et al., 2017.)	Machine Learning for Anomaly Detection and Categorizatio n in Multi- cloud Environments	One-Class Support Vector Machines (OCSVM) and Autoencoder Neural Networks (AENN) K-Means clustering algorithm	synthetic dataset from CloudSim simulator, real-world dataset from a multi-cloud environment consisting of Amazon Web Services and Microsoft Azure	CPU usage, memory usage, disk usage, and network traffic	The authors also considered the correlation between their features in their approach. Overall, the proposed machine learning-based approach showed promising results in detecting and categorizing anomalies in multi-cloud environments	Use of OCSVM,AENN & K-Means provides a new perspective in the field of anomaly detection for multi-cloud environments.	DR 90%.
St 1 2	International Conference on Cyber Security and Protection of Digital Services (Cyber Security)	(Elmra bit et al., 2020.)	Evaluation of Machine Learning Algorithms for Anomaly Detection	Decision Trees, Random Forest, Support Vector Machines (SVM), and K-Nearest Neighbor (KNN)	KDD Cup 1999 dataset, DARPA 1998	bytes and packets, protocol type, and duration of the communication system call dataset features number of arguments, system call type, and the process ID	Overall, the study found that Random Forest and SVM performed better than the other machine learning algorithms for detecting anomalies in both network traffic and system call data.	The study also showed that machine learning approaches outperformed the rule-based approach for anomaly detection	accuracy of 99.4% and a detection rate of 97.4%
<i>St</i> 1 3	In Software Engineering and Service Science (ICSESS), 2014 5th IEEE International Conference	(Liu et al., 2014.)	A lightweight anomaly mining algorithm in the internet of things	Data aggregation anomaly detection	synthetic dataset generated using the DARPA Intrusion Detection Evaluation Program (IDEVAL) dataset	packet length, inter-arrival time, packet size, and protocol type	proposed algorithm is based on the concept of frequent pattern mining, which involves identifying patterns that occur frequently in the dataset. It consists of preprocessing the dataset to extract features and transform the data into a transaction database.	applying a set of rules to the frequent itemsets to identify anomalies.	precision of 96.8% and a recall of 91.7%

St 1 4	IEEE Internet of Things Journal	(Lyu et al., 2017.)	Fog- empowered anomaly detection in iot using hyperellipsoid al clustering	hyperellipsoid al clustering	KDD Cup 1999 dataset custom dataset collected from a real-world IoT network	combination of packet header information and network flow statistics.	algorithm can be used in Fog computing environments to efficiently detect anomalies in large datasets generated by IoT networks.	anomalies are detected based on the distance between the data and the hyperellipsoids.	precision of 95.2% and a recall of 94.1%
St 1 5	Computing and Communicati ons Conference (IPCCC)	(Sum mervil le et al., 2015.)	Ultra- lightweight deep packet anomaly detection for internet of things devices	Deep Packet Inspection Convolutional Neural Network (CNN) decision tree	KDD Cup 1999 dataset, the UNSW- NB15 dataset, and a custom dataset collected from a real-world IoT network	packet header information and network flow statistics	The authors also showed that the proposed algorithm is lightweight and suitable for deployment on IoT devices, as it can achieve high accuracy with a small number of parameters and low computational overhead.	decision tree is used to classify the extracted features as normal or anomalous.	precision of 99.93% and a recall of 99.64%
St 1 6	International Journal of Computer Applications	(Fu et al., 2011)	An intrusion detection scheme based on anomaly mining in internet of things	clustering algorithm feature selection algorithm	real-world IoT network and the KDD Cup 1999 dataset	packet header information, network flow statistics, and protocol-specific features such as Modbus function codes	The results showed that the proposed algorithm outperformed other state-of- the-art anomaly detection algorithms, including k- means clustering, one-class SVM, and Isolation Forest.	network traffic is compared to the model, and anomalies are detected based on the distance between the traffic and the model.	precision of 96.5% and a recall of 94.8%
St 1 7	Wireless and Mobile Networking Conference (WMNC)	(Tsitsi roudi et al., 2016.)	A mobile application for visual- assisted wormhole attack detection in iot-enabled wsns	SURF (Speeded Up Robust Features) algorithm RANSAC (Random Sample Consensus) algorithm SVM	a simulation environment to generate synthetic datasets with varying numbers of nodes, network topologies, and wormhole configuration s.	images captured by the mobile device.	The authors used SURF algorithm to extract and match features from the images captured by the mobile device. The extracted features were used to estimate the transformation between the two images, which was used to detect the presence of a wormhole attack.	authors compared their approach with existing approaches in the literature and demonstrated its superiority	detection accuracy of 98.6% and a false positive rate of 0.3%.

<i>St</i> <i>1</i> <i>8</i>	Computer Communicati ons journal	(Bosta ni et al., 2017.)	Hybrid of anomaly- based and specification- based ids for internet of things using unsupervised opf based on mapreduce approach	One-class Support Vector Machine (SVM) classifier based on the Optimum- Path Forest (OPF) algorithm	KDD Cup 1999 dataset and the IoT dataset	number of packets, packet size, source IP address, destination IP address, protocol type, and time duration	authors used the OPF algorithm to cluster the data into normal and abnormal groups, and then applied the One-class SVM algorithm to classify the test data. authors report that their approach achieved high detection rates for both the KDD Cup 1999 dataset and the IoT dataset, with low false positive rates	The approach achieves high detection rates with low false positives and shows promise for detecting intrusions in real- world IoT networks.	precision of 96.2%, a recall of 95.4%, and an F1 score of 95.8%.
St 1 9	Telecommuni cation International Symposium	(Trille s et al., 2016)	A domain- independent methodology to analyze iot data streams in real-time. a proof of concept implementatio n for anomaly detection from environmental data	decision trees, random forests, support vector machines (SVMs), and neural networks	(1) a smart city dataset containing air quality data, (2) a water quality dataset containing water quality data, and (3) a smart building dataset containing energy consumption data	statistical features, frequency domain features, and time- domain	authors report that their methodology can be applied to various domains, such as smart cities, smart buildings, and environmental monitoring. They also show that their methodology can be used to identify patterns and anomalies in data streams and to make predictions about future values of the data.	The methodology is evaluated using real-world datasets and various modeling techniques, and the results show promise for identifying patterns and anomalies in data streams	precision of 94%, a recall of 88%, and an F1 score of 91%.
St 2 0	Advanced Communicati on Technology (ICACT) 8 20th International Conference	(Hoan g et al., 2018.)	A pcabased method for iot network traffic anomaly detection	Principal Component Analysis (PCA) K-means clustering	dataset of network traffic	Statistical moments of packet counts and sizes, inter-arrival times, and durations.	method was able to effectively detect anomalous traffic patterns in the IoT network. The method was able to identify various types of anomalies, including TCP SYN floods, UDP floods, and botnet traffic.	method outperformed traditional statistical anomaly detection methods, such as the Mahalanobis distance method	accuracy of 98%, a precision of 94%, a recall of 98%, and an F1 score of 96%.
St 2 1	Engineering, Technology and Innovation (ICE/ITMC),	(Zissis et al 2017.)	Intelligent security on the edge of the cloud	SVM	did not use a specific dataset in the paper. Instead, they proposed a	packet header information, flow duration, and payload size	framework includes a multi- layer security model that can detect and respond to network attacks in real-time.	Blockchain technology: used to ensure secure communication and data sharing	N/A

	International Conference				framework for intelligent security on the edge of the cloud that could be applied to any network environment		use of machine learning algorithms at the edge of the network can reduce the need for centralized processing and improve the scalability and efficiency of the network.	between edge devices.	
St 2 2	Communicati ons (ICC), 2016 IEEE International Conference	(Sedje Imaci et al., 2016.)	A lightweight anomaly detection technique for low-resource iot devices: A game- theoretic methodology	Neuro-fuzzy Recurrent Neural Network (RNN) Variational Autoencoder (VAE)	dataset of network traffic generated by IoT devices, which was obtained from a public dataset called the IoT-23 dataset	packet header information, including source and destination IP addresses, ports, and protocol types.	proposed technique was found to be effective in detecting various types of anomalies, including botnet traffic, DDoS attacks, and port scanning. proposed technique is designed to be lightweight and can be implemented on low-resource IoT devices, making it suitable for deployment in IoT environments with limited computational resources.	features were preprocessed and transformed using VAE, the RNN was then used to model the temporal behavior of the devices and detect anomalies based on the transformed features.	DR 90%
St 2 3	Security and Communicati on Networks journal	(Granj al et al., 2018.)	An intrusion detection and prevention framework for internet integrated coap wsn	Threshold based method reputation- based mechanism	authors did not use a specific dataset in the paper. Instead, they proposed an intrusion detection and prevention framework that could be applied to any CoAP(WSN	packet header information, including source and destination IP addresses, ports, and protocol types	framework integrates machine learning and reputation-based mechanisms. framework can improve the security and reliability of CoAP-based WSNs, which are becoming increasingly important in the context of the Internet of Things.	Reputation-based mechanism: used to identify suspicious nodes and block them from participating in the network.	Accuracy 94%

<i>St</i> 2 4	Journal of Information Security and Applications	(Dom b et al., 2017.)	Lightweight adaptive randomforest for iot rule generation and execution	Adaptive Random Forest (ARF)algorith m	IoT-23 dataset.	packet header information	Authors proposed a lightweight adaptive random forest algorithm for rule generation and execution in IoT devices. features were used to train the ARF model to generate and execute rules for the IoT devices. found to be effective in detecting anomalous behavior and generating rules to mitigate the risk of security breaches.	Anomaly detection algorithm was used to identify anomalous behavior in the data.	accuracy rate of 96% and an execution time of 20-30 millisecon ds
<i>St</i> 2 5	IEEE Transactions on Vehicular Technology	(Sedje lmaci et al., 2017.)	An accurate security game for lowresource iot devices	Game theory iterative algorithm	did not use a specific	number of vulnerabilities, the severity of the vulnerabilities, and the number of successful attacks	authors proposed a game- theoretic approach to optimize the security of IoT devices with limited resources. approach was found to be effective in finding the optimal strategy for the defender, which maximizes the security of the IoT device while minimizing the cost of protection	A two-player game between an attacker and a defender, where the attacker's goal is to compromise and the defender's goal is to protect	DR 97%, FPR 3%
<i>St</i> 2 6	Future Generation Computer Systems journal	(Gunu pudi et al., 2017.)	A self- constructing feature clustering approach for anomaly detection	K-means clustering algorithm and a distance- based outlier detection algorithm	KDDCup99 dataset, NSL- KDD dataset, and UNSW- NB15 dataset	packet header information, including source and destination IP addresses, ports	The approach involves clustering similar features together to create a set of clusters, and then identifying anomalies based on their distance from the centroid of the cluster. authors argue that the proposed approach is suitable for real-time anomaly detection in high- speed networks, as it is designed to be scalable and efficient.	proposed approach is also self-adaptive, meaning that it can adapt to changes in the network traffic patterns over time	F1-score of over 0.98

<i>St</i> 2 7	International Journal of Computer Applications	(Pongl e et al., 2015)	Real time intrusion and wormhole attack detection in internet of things	C4.5 decision tree algorithm and the Support Vector Machine (SVM) algorithm	network traffic data generated by simulating IoT devices and an attacker	packet size, packet rate, and packet content.	Approach involves monitoring network traffic in real-time and identifying anomalous behavior using a set of predefined rules and machine learning algorithms.	Blackhole and wormhole detection	True Positive Detection 94%
<i>St</i> 2 8	Springer ,International Conference on Context- Aware Systems and Applications	(Mach aka et al., 2016)	Using the cumulative sum algorithm against distributed denial of service attacks in internet of things	CUSUM algorithm	custom datase which consisted of simulated network traffic generated by a DDoS attack tool	packet rate and packet size	Proposed a method for detecting Distributed Denial of Service (DDoS) attacks in IoT networks using the Cumulative Sum (CUSUM) algorithm. Approach was found to be more effective than several other state-of-the-art DDoS detection techniques, including threshold-based and statistical-based methods.	Involves monitoring network traffic in real-time and applying the CUSUM algorithm to identify sudden increases in traffic volume	DR 98% FPR 0.5%
St 2 9	International Journal of Intelligent Systems	(Mosh taghi et al., 2017)	Exponentially weighted ellipsoidal model for anomaly detection	Exponentially weighted ellipsoidal	Real-world datasets in including network traffic data, system call data, and sensor data.	packet size and protocol type, temperature and humidity readings	Authors proposed an anomaly detection approach based on the Exponentially Weighted Ellipsoidal Model (EWEM). The EWEM is a statistical model that represents the normal behavior of a system as an ellipsoid in a high- dimensional space.	It is designed to be adaptable and robust to changes in the normal behavior	N/A
<i>St</i> 3 0	IEEE Internet of Things Journal	(Yu et al., 2017.)	Recursive principal component analysis- based data outlier detection and sensor data aggregation in iot systems	Recursive Principal Component Analysis (PCA)	custom dataset which consisted of simulated sensor data from a network of IoT devices	temperature, humidity, and light level readings.	Proposed a recursive approach to update the PCA model as new data is collected, which allows the approach to adapt to changes in the sensor data over time.	Involves applying PCA to sensor data to identify outliers and detect abnormal sensor readings.	TPR 1.0000, FPR 0.0331

St 3 1	Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence & Computing	(Zhao et al., 2017)	A dimension reduction model and classifier for anomaly- based intrusion detection in internet of things	Principal Component Analysis (PCA) Support Vector Machine (SVM)	KDDCup99 dataset	Source and destination IP addresses, protocol types, and service types. number of bytes sent and received, and the duration of the connection	Authors proposed an approach based on dimension reduction and classification for anomaly- based intrusion detection in IoT systems. Approach can help improve the security and reliability of IoT systems by detecting and preventing malicious network traffic.	Features were used to reduce dimensionality and improve the accuracy of the anomaly detection.	DR 99.51%
<i>St</i> 3 2	MATEC Web of Conferences	(Tama et al., 2018.)	An integration of pso-based feature selection and random forest for anomaly detection in iot network	particle swarm optimization (PSO) random forest classification	UNSW-NB15 dataset	set of 49 network traffic features, including source and destination IP addresses, packet length, and port numbers	outperformed several other state-of-the-art anomaly detection techniques, including k-nearest neighbor, decision tree, and support vector machine classifiers. authors argue that the PSO-based feature selection method helps to reduce the dimensionality of the network traffic data, while the random forest classifier helps to improve the accuracy and reliability of the anomaly detection.	dataset includes both normal and anomalous network traffic, and is designed to simulate realistic attack scenarios in a variety of network environments.	DR accuracy of 99.6% on the UNSW- NB15 dataset and 97.62% on the real- world IoT dataset
<i>St</i> <i>3</i> <i>3</i>	IEEE Computer Communicati on and Networks (ICCCN),Inte rnational Conference	(Arrin gton et al., 2016.)	Behavioral modeling intrusion detection system (bmids) using internet of things (iot) behavior- based anomaly detection via immunity- inspired algorithms	negative selection algorithms and artificial immune system (AIS)	IoT-23 dataset	18 network traffic features, including source and destination IP addresses, packet length, and protocol type	Authors argue that the BMIDS approach is effective for detecting both known and unknown threats in IoT networks, and can be used in a variety of IoT applications, such as smart homes and healthcare systems.	approach is based on the immune system's ability to recognize and respond to foreign antigens	DR accuracy 99.95%

St 3 4	International Journal of Computer Applications	(Stiaw an et al., 2011)	Characterizin g Network Intrusion Prevention System	statistical methods and data analysis techniques, such as descriptive statistics and hypothesis testing	real-world NIPS system in their laboratory environment	packet rate and packet size	authors found that the NIPS system had a high detection rate for known attacks and intrusions, but was less effective in detecting unknown or novel attacks.	Analyzed the NIPS system's performance in terms of its ability to accurately detect and prevent network intrusions	N/A
St 3 5	IEEE transactions on medical imaging	(El- Naqa et al., 2008.)	A Support Vector Machine Approach for Detection of Microcalcific ations	Support Vector Machine (SVM)	microcalcifica tion clusters and normal tissue regions	Noise, co- occurrence matrix and Gabor filters	study shows that the SVM approach can be an effective tool for the detection of microcalcifications in mammograms, which can aid in the early diagnosis of breast cancer	applied a pre- processing step to enhance the contrast and remove noise from the mammograms.	DR 96.25%
<i>St</i> <i>3</i> <i>6</i>	International Symposium on Distributed Computing and Applications to Business, Engineering and Science	(Distri buted et al., 2011.)	Study on Multi-Grade Intrusion Detection Model Based on Data Mining Technology	decision trees, clustering algorithms, and support vector machines (SVMs)	KDD Cup 1999 dataset	connection duration, service type, number of failed login attempts, and number of outbound bytes	find that the SVM algorithm performs particularly well in detecting certain types of intrusions, such as DoS attacks.	Identify algorithms and features most effective in detecting different types of intrusions	NA
St 3 7	Researchgate	(Eskin et al., 2008)	Adaptive Model Generation for Intrusion Detection Systems	decision trees, random forests, Naive Bayes, and k- nearest neighbors (KNN).	NSL-KDD dataset	Connection duration, number of failed login attempts, and number of outbound packets.	results show that the adaptive models generated by their approach outperformed the static models that use a fixed set of features and machine learning algorithm	approach involves three main stages: feature selection, model generation, and model adaptation.	DR 0.3, FPR 0.0005
<i>st</i> 3 8	ResearchGate International Conference on Intelligent Engineering and Management (ICIEM)	(Jain et al., 2022.)	A Review: Data Mining Classification Techniques	decision trees, Bayesian networks, artificial neural networks, k- nearest neighbors (KNN), support vector machines	No specific dataset	wrapper, filter	They conclude that there is no single best algorithm that works well for all types of datasets and classification tasks. However, they note that decision trees and SVMs are among the most widely used and effective classification algorithms.	discuss the importance of feature selection and extraction in classification tasks.	73.82- 99.74

St 3 9	International journal of advanced research in science & engineering	(Profe ssor, 2015)	A Survey- Comparative Study on Intrusion Detection System	(SVM), and random forests. decision trees, support vector machines, clustering, neural networks, and genetic algorithms	KDD Cup 1999 dataset	network traffic data, system call data, and application data.	the paper suggests that future research should focus on developing more robust and scalable intrusion detection systems that can handle the increasing volume and complexity of network traffic data.	statistical-based techniques, machine learning- based techniques, and hybrid techniques that combine multiple methods	NA
St 4 0	International Journal of Advanced Research in Computer and Communicati on Engineering	(Kalar ani & Selva Brund a, 2014)	A Survey on Efficient Data Mining Techniques for Network Intrusion Detection System (IDS)	Decision Trees Naive Bayes k-Nearest Neighbors (k- NN) Support Vector Machines (SVM) Artificial Neural Networks (ANN) Random Forest Gradient Boosting	NSL-KDD dataset,KDD Cup'99 dataset,UNS W-NB15 dataset,CICI DS2017 dataset,DARP A 1998 dataset,Kyoto 2006+ dataset	source IP, destination IP, protocol type, source port, destination port,number of packets, number of bytes, duration,payload content, keywords, mean, standard deviation, entropy	Decision Trees, Naive Bayes, and k-NN are suitable for real-time intrusion detection due to their simplicity and low computational requirements. SVM and ANN are more suitable for detecting complex and non-linear intrusion patterns. Random Forest and Gradient Boosting can improve the accuracy of intrusion detection, but at the cost of increased computational requirements. NSL-KDD dataset is widely used as a benchmark dataset for evaluating intrusion detection techniques.	Ensemble techniques, such as bagging and boosting, can improve the performance of intrusion detection systems.	Accuracy 95.6- 99.56%
St 4 1	Researchgate International Journal of Scientific Research in Computer Science, Engineering and Information Technology	(Hussa in & Priscil la, 2018)	A Survey on Various Kinds of Anomalies Detection Techniques in the Mobile Adhoc Network Environment	Decision Tree, Artificial Neural Network (ANN), Support Vector Machine (SVM), and K-Nearest	No specific datasets	traffic flow, packet size, hop count, inter-packet delay, and energy consumption	the authors note the importance of considering resource constraints in MANETs when selecting and designing anomaly detection techniques.	suggest that a combination of different techniques, including signature-based, anomaly-based, and specification- based approaches	NA

				Neighbor (KNN) classifiers, clustering,stat istical techniques					
St 4 2	Google scholar Journal of service research	(Venk atesan et al., 2019.)	A Modular Accelerator Generator for Neural Networks	convolutional neural networks, and recurrent neural networks	No data set	The modular accelerator generator presented in the paper has several features. It can generate hardware accelerators for different neural network architectures	The paper shows that the generated accelerators achieve high performance and energy efficiency compared to software-based implementations of the same neural network architectures.	accelerator is used to customize the design for different neural network architectures, allowing users to optimize performance and energy efficiency for specific applications	NA
St 4 3	International Journal of Computer Science and Mobile Computing	(Sayar et al., 2014)	A Review of Intrusion Detection Systems in Computer Network	artificial intelligence, fuzzy logic and neural network	No data set	network traffic analysis, protocol analysis, and host- based monitoring. machine learning, such as clustering and classification algorithms	provides a comprehensive review of various IDS algorithms and techniques. It also highlights the importance of selecting the appropriate IDS approach	authors recommend future research in developing IDSs that can detect unknown attacks and in enhancing IDS performance while reducing false positives	NA
St 4 4	Research gates	(Perez et al., 2017.)	Intrusion detection in computer networks using hybrid machine learning techniques	J48 decision tree, K- Nearest Neighbor (KNN),Suppo rt Vector Machine (SVM)	KDD Cup 1999 dataset	failed login attempts, the duration of the connection, and the protocol type	outperforms individual algorithms in terms of detection rate and false positive rate. achieves an overall detection rate of 99.98% and a false positive rate of 0.007%.	demonstrates the effectiveness of using a combination of machine learning algorithms in improving the accuracy of IDSs.	detection rate of 99.98% and a false positive rate of 0.007%.
<i>St</i> <i>4</i> <i>5</i>	International Journal of Computer Applications	(Patel & Tiwari , 2014)	Bagging Ensemble Technique for intrusion Detection System	Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM)	KDD Cup 1999 dataset and the NSL- KDD dataset	protocol type, service, and flag, count, duration, error rate.	The BET model achieved better accuracy and detection rate compared to the individual base classifiers and other ensemble models such as AdaBoost and Random Subspace	proposed BET model is effective in detecting network intrusion and can improve the performance of intrusion	Accuracy 99.89%, 31.17sec

St 4 6	Semantic scholar	(Bhav sar et al., 2008)	Intrusion Detection System Using Data Mining Technique Support Vector Machine	Data Mining, SVM	KDD Cup 1999 dataset NSL-KDD dataset	Preprocessing steps included normalization, feature scaling, and one-hot encoding	The SVM model achieved an accuracy of 98.81% on the NSL-KDD dataset and 97.51% on the KDD Cup 1999 dataset	The SVM model was able to accurately detect various types of attacks, including DoS, Probe, and R2L, with low false positive rates.	DR 98.57 %
St 4 7	International Journal of Computer Science Issues	(Sadek et al., 2013.)	Effective Anomaly Intrusion Detection System based on Neural Network with Indicator Variable and Rough set Reduction	neural network	NLS KDD Cup 1999 dataset	protocol type, service, flag, and number of failed login attempts.	achieved an accuracy of 96.79% on the NLSKDD Cup 1999 dataset, which is higher than the accuracy achieved by other state-of- the-art anomaly detection systems.	use of indicator variable and rough set reduction techniques led to a significant reduction in the number of false alarms	detection accuracy about 96.7% with a false alarm rate of 3%.
<i>St</i> <i>4</i> <i>8</i>	Arab Journal Platform	(Elnga r et al., 2013)	A Real Time Anomaly Intrusion Detection System with High Accuracy	K-means C4.5 decision tree and the Chi- square	KDD Cup 1999 dataset	source IP address, destination IP address, protocol type, number of failed logins, and number of file creations.	achieves high accuracy in detecting anomalies, with a detection rate of 99.76% and a false positive rate of 0.001%. The system also has a low detection time and can detect attacks in real-time	uses statistical techniques such as the mean and standard deviation to normalize the data.	DR accuracy (98.2%) and improving the speed to 0.18 sec
St 4 9	Elsevier Journal of King Saud University – Computer and Information Sciences	(Altwa ijry, 2013)	Bayesian based Intrusion Detection System	Naïve Bayes algorithm	NSL-KDD dataset	protocol type, source and destination addresses, and service type, the number of connections, the number of failed logins, and the duration of the connection, the time of day and the day of the week	compared their approach with other classification algorithms, such as k- Nearest Neighbor (k-NN) and Support Vector Machines (SVM), and found that the proposed system outperformed these	Bayesian-based intrusion detection system is effective in detecting various types of attacks in computer networks.	TN = 99.7%, DR= 93.0%
St 5 0	International Journal of Computer Science and	(T. Peng &	Data mining Intrusion Detection	Decision tree and SVM	KDD Cup 1999 dataset	protocol type, source and destination addresses, source	proposed intrusion detection system achieved high detection rates with low false positive rates in real-time	authors attributed the system's performance to the use of data mining	DR= 97.2%, FR= 0.75%

	Network Security	Zuo, 2006)	System in real time			and destination ports, duration of the connection	monitoring of network traffic. The system also outperformed other traditional intrusion detection systems, such as Snort	algorithms and the combination of frequent itemsets and classification rules	
St 5 1	International journal of computer applications	(Li et al., 2019)	Advanced Data Mining and Applications	clustering, decision trees, and neural networks	dataset of UNIX process accounting data from a large commercial network	user ID, process ID, CPU usage, disk activity, and network traffic	the adaptive nature of their approach allowed it to adapt to changes in system behavior over time, making it more robust to new types of attacks.	approach uses a combination of statistical and machine learning algorithms	accuracy = 99 1%, FP=1%,F N=0.6%
<i>St</i> 5 2	International Journal of Information Technology Convergence and Services (IJITCS)	(Renu ka DeviT hanase karan, 2011)	A Robust & Efficient Real Time Network Intrusion Detection System Using Artificial Neural Network in Data Mining	Artificial Neural Network (ANN) backpropagat ion algorithm feature selection algorithm	KDD Cup 1999 dataset	source and destination IP addresses, source and destination ports, and packet payload to train the ANN model	system achieved an accuracy of 97.5% in detecting network intrusions on the KDD Cup 1999 dataset, outperforming other machine learning and data mining based intrusion detection systems	feature selection algorithm was found to improve the detection accuracy of the system by reducing the number of features used in training the ANN model	FA= 0.0812, time training 46 sec
<i>St</i> 5 3	Computers & Security journal	(Tjhai et al., 2010.)	A preliminary two-stage alarm correlation and filtering system using SOM neural network and K-means algorithm	neural network and K-means algorithm	real-world industrial control system	Two-stage alarm correlation Self-Organizing Maps	proposed system was able to effectively cluster and filter alarms from a real-world ICS, reducing the number of alarms to a manageable amount for operators to handle	SOM proved to be effective in reducing the number of alarms and identifying related alarms	78.8% of false alarms, 96% DR
St 5 4	IEEE International MultiDiscipli nary Conference on Cognitive Methods in Situation Awareness and Decision Support	(Peng et al., 2016.)	A Two-stage Pattern Recognition Method for Electric Customer Classification in Smart Grid	clustering algorithm, Density- Based Spatial Clustering, k-Nearest Neighbor (k- NN)	real-world smart grid system	electricity usage of each customer over a period of time	first stage of the method using DBSCAN is able to group customers into meaningful clusters, while the second stage using k-NN is able to accurately assign customers to different classes	Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is used to group customers based on their consumption patterns	MIA= 0.01120

<i>St</i> 5 5	IEEE transactions on smart grid	(Singh et al., 2017.)	Deep Sparse Coding for Non-Intrusive Load Monitoring	deep sparse coding architecture	REDD dataset	electricity consumption data	quality of the clustering depends on the initial centroid positions, with better initial positions leading to better clustering results	approach is able to accurately disaggregate the overall electricity consumption into individual appliance-level consumption for most of the appliances in the dataset	Run times=43. 9 secs
<i>St</i> 5 6	Information Fusion Journal	(Viini kka et al., 2009)	Processing intrusion detection alert aggregates with time series modeling	Time series	real-world dataset collected from a large enterprise network	Alert count, Alert types, Time of day, Day of the week, Source and destination IP addresses, Network traffic volume,	use of time series modeling, trend analysis approach, and evaluation metrics helps to improve the accuracy and efficiency of the method	trend analysis approach helps to identify patterns and trends in the alert data and detect abnormal behaviors	0.2–0.3% of intervals
St 5 7	International Journal Engineering Research and Technology (IJERT)	(Revat hi et al., 2013.)	A detailed analysis on NSLKDD dataset using various machine learning techniques for intrusion detection	Decision Tree, Random Forest, Naive Bayes, K- Nearest Neighbor, and Support Vector Machine	NSLKDD dataset	Source and destination IP addresses, Packet size and duration,Port number,Number of failed login attempts, Number of outbound packets	Random Forest and Support Vector Machine perform better than other techniques in terms of detection rate and false alarm rate	feature selection and oversampling techniques help to improve the performance of the technique	Accuranc e range of 71.1-99.8
<i>St</i> 5 8	IEEE International Conference on Engineering and Technology (ICETECH)	Ibrahi m Salim. M et al 2016.)	A Study on IDS for preventing Denial of service attack using Outliers techniques	Outliers techniques Local Outlier Factor (LOF) and Isolation Forest	KDDCup99 dataset	Time of day,Packet direction,Packet type,Port numbers,Source and destination IP addresses,Packet rate,Packet size	combination of LOF with other machine learning algorithms, such as Decision Trees and Random Forests, can further improve the accuracy of the IDS system.	system was able to achieve high detection rates for DoS attacks while maintaining a low false positive rate.	Accuracy =80.14%, FPR=21.8 3%,DR=7 8%

References

- 1. R. T.-J. of I. T. C. and, & 2011, undefined. (2011). A Robust and Efficient Real Time Network Intrusion Detection System Using Artificial Neural Network In Data Mining. *Citeseer*, 1(4). https://doi.org/10.5121/ijitcs.2011.1402
- 2. Altwaijry, H. (2013). Bayesian based intrusion detection system. *Lecture Notes in Electrical Engineering*, 170 LNEE, 29–44. https://doi.org/10.1007/978-94-007-4786-9_3
- Arrington, B., Rufus, R., Esterline, A., Arrignton, B., & Barnett, L. (n.d.). Behavioral modeling intrusion detection system (BMIDS) using internet of things (IoT) behavior-based anomaly detection via immunity-inspired algorithms. *Ieeexplore.Ieee.Org.* https://doi.org/10.1109/ICCCN.2016.7568495
- Behniafar, M., Nowroozi, A., ISeCure, H. S.-, & 2018, undefined. (2018). A survey of anomaly detection approaches in internet of things. *Researchgate.Net*. https://www.researchgate.net/profile/Alireza-Nowroozi-2/publication/327417983_A_Survey_of_Anomaly_Detection_Approaches_in_Internet_of_Things/links/5ebe8ad19285 1c11a867f565/A-Survey-of-Anomaly-Detection-Approaches-in-Internet-of-Things.pdf
- Bhavsar, Y., Emerging, K. W.-I. J. of, & 2013, undefined. (2008). Intrusion detection system using data mining technique: Support vector machine. Academia.Edu, 9001(3). https://www.academia.edu/download/44581943/project1.pdf
- 6. Boell, S., Information, D. C.-K.-J. of, & 2015, undefined. (2015). On being 'systematic'in literature reviews in IS. Journals.Sagepub.Com, 30(2), 161–173. https://doi.org/10.1057/jit.2014.26
- Bostani, H., Communications, M. S.-C., & 2017, undefined. (n.d.). Hybrid of anomaly-based and specification-based IDS for Internet of Things using unsupervised OPF based on MapReduce approach. *Elsevier*. Retrieved April 15, 2023, from https://www.sciencedirect.com/science/article/pii/S0140366416306387
- Carcary, M., Doherty, E., European, G. C.-E. 2018 17th, & 2018, undefined. (n.d.). An analysis of the systematic literature review (SLR) approach in the field of IS management. *Books.Google.Com*. Retrieved April 15, 2023, from https://books.google.com/books?hl=en&lr=&id=gU9mDwAAQBAJ&oi=fnd&pg=PA78&dq=SLR+(Okoli,+2015):++ &ots=Euj-e0i0VZ&sig=6XrBhegDjMdnpt499Ai2BVgIDQs
- 9. Das Nath, M., Bhattasali, T., Das, M., & Xavier's College, S. (2020). Anomaly Detection Using Machine Learning Approaches. https://doi.org/10.32010/26166127.2020.3.2.196.206
- Distributed, H. A.-2011 10th I. S. on, & 2011, undefined. (n.d.). Study on Multi-grade Intrusion Detection Model Based on Data Mining Technology. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/6118730/
- 11. Domb, M., Bonchek-Dokow, E., Security, G. L.-J. of I., & 2017, undefined. (n.d.). Lightweight adaptive Random-Forest for IoT rule generation and execution. *Elsevier*. Retrieved April 15, 2023, from https://www.sciencedirect.com/science/article/pii/S2214212616302332
- 12. Elmrabit, N., Zhou, F., Li, F., ... H. Z. conference on, & 2020, undefined. (n.d.). Evaluation of machine learning algorithms for anomaly detection. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/9138871/
- 13. El-Naqa, I., Yang, Y., ... M. W.-I. transactions on, & 2002, undefined. (n.d.). A support vector machine approach for detection of microcalcifications. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/1176643/
- 14. Elngar, A. A., El A Mohamed, D. A., M Ghaleb, F. F., Elngar, A., El Mohamed, A. A., & Ghaleb, F. M. (2013). A realtime anomaly network intrusion detection system with high accuracy. *Digitalcommons.Aaru.Edu.Jo*, 2(2), 49. https://doi.org/10.12785/isl/020201
- 15. Engineering, D. Z., (ICE, T. and I., & 2017, undefined. (n.d.). Intelligent security on the edge of the cloud. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/8279999/
- 16. Eskin, E., Miller, M., Zhong, Z.-D., Yi, G., Lee, W.-A., & Stolfo, S. (2000). Adaptive model generation for intrusion detection systems. https://academiccommons.columbia.edu/doi/10.7916/D8GX4J9V
- Faisal, M., Aung, Z., ... J. W.-I. S., & 2014, undefined. (n.d.). Data-stream-based intrusion detection system for advanced metering infrastructure in smart grid: A feasibility study. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/6720175/?casa_token=RtVwPRVhiw0AAAAA:6KF4Aw3ZmkyXbNOQ kCFnyBUdVbsSJLi6sb_E0UNzwxft5lHtxbeLbiLcQda53G4nDVbC_wMUF8FC2w
- Fu, R., Zheng, K., Zhang, D., & Yang, Y. (2011). An intrusion detection scheme based on anomaly mining in internet of things. *IET Conference Publications*, 2011(591 CP), 315–320. https://doi.org/10.1049/CP.2011.1014
- Granjal, J., Networks, A. P.-S. and C., & 2018, undefined. (n.d.). An intrusion detection and prevention framework for internet-integrated CoAP WSN. *Hindawi.Com.* Retrieved April 15, 2023, from https://www.hindawi.com/journals/scn/2018/1753897/
- Gunupudi, R., Nimmala, M., ... N. G.-F. G., & 2017, undefined. (n.d.). CLAPP: A self constructing feature clustering approach for anomaly detection. *Elsevier*. Retrieved April 15, 2023, from https://www.sciencedirect.com/science/article/pii/S0167739X16308718
- Hoang, D., conference, H. N.-2018 20th I., & 2018, undefined. (n.d.). A PCA-based method for IoT network traffic anomaly detection. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/8323766/
- 22. Hussain, N., & Priscilla, M. (2018). A Survey on Various Kinds of Anomalies Detection Techniques in the Mobile Adhoc Network Environment. https://www.researchgate.net/profile/A-M-J-Niyaz-

Hussain/publication/324721255_A_Survey_on_Various_Kinds_of_Anomalies_Detection_Techniques_in_the_Mobile_ Adhoc_Network_Environment/links/5adf044b0f7e9b285943ad3a/A-Survey-on-Various-Kinds-of-Anomalies-Detection-Techniques-in-the-Mobile-Adhoc-Network-Environment.pdf

- Ioulianou, P. (n.d.). Smart Network-based Intrusion Detection System (SNIDS) for Advanced Metering Infrastructure. Studentnet.Cs.Manchester.Ac.Uk. Retrieved April 15, 2023, from http://studentnet.cs.manchester.ac.uk/resources/library/thesis_abstracts/MSc17/FullText/Ioulianou-Philokypros-diss.pdf
- 24. Jain, A., Somwanshi, D., ... K. J.-2022 3rd I., & 2022, undefined. (n.d.). A Review: Data Mining Classification Techniques. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/9853036/
- 25. Kalarani, P., & Selva Brunda, S. (2014). Survey on Efficient Data Mining Techniques for Network Intrusion Detection System (IDS). In *International Journal of Advanced Research in Computer and Communication Engineering* (Vol. 3, Issue 9). www.ijarcce.com
- 26. Kitchenham, B. A. (2012). Systematic review in software engineering. 1–2. https://doi.org/10.1145/2372233.2372235
- 27. Li, J., Wang, S., Qin, S., Li, X., & Wang, S. (2019). Advanced Data Mining and Applications: 15th International Conference, ADMA 2019, Dalian, China, November 21–23, 2019, Proceedings. https://books.google.com/books?hl=en&lr=&id=560-DwAAQBAJ&oi=fnd&pg=PR5&dq=Data+mining+Intrusion+Detection+System+in+real+time+by+Tao+Peng,+Wanli Zuo+&ots=k1_Vssjvwl&sig=d56cArFfhfHyUn43XLor-BILQbw
- Liu, Y., on, Q. W.-2014 I. 5th I. C., & 2014, undefined. (n.d.). A lightweight anomaly mining algorithm in the Internet of Things. *leeexplore.leee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/6933768/?casa_token=gp2ksoWCsVsAAAAA:uH7gi_fwBvKzC85Lqz9b1pOz3A9hlvU3r7LW_CpZr6vRo6E76iHIIauyaZfp8_QKYVyaoYHv3oDuw
- Lyu, L., Jin, J., Rajasegarar, S., ... X. H.-I. I. of, & 2017, undefined. (n.d.). Fog-empowered anomaly detection in IoT using hyperellipsoidal clustering. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7936471/
- Machaka, P., McDonald, A., ... F. N.-C.-A. S., & 2016, undefined. (2016). Using the cumulative sum algorithm against distributed denial of service attacks in internet of things. *Springer*, 165, 62–72. https://doi.org/10.1007/978-3-319-29236-6_7
- Moshtaghi, M., Erfani, S., ... C. L.-I. J. of, & 2017, undefined. (2017). Exponentially weighted ellipsoidal model for anomaly detection. *Wiley Online Library*, 32(9), 881–899. https://doi.org/10.1002/int.21875
- 32. on, T. R.-2016 I. I. C., & 2016, undefined. (n.d.). A study on IDS for preventing denial of service attack using outliers techniques. *leeexplore.leee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7569352/?casa_token=5c1QxmryQuoAAAAA:gAA0SPJkNglfGzKM90 C3ZWGb_yik5e93MK7hrGsgDoiJani1E3RfR5sdN3aTy80w0nokeyeV8fY2wQ
- 33. Patel, A., & Tiwari, R. (2014). BAGGING ENSEMBLE TECHNIQUE FOR INTRUSION DETECTION SYSTEM. In *International Journal For Technological Research In Engineering* (Vol. 2, Issue 4). www.ijtre.com
- 34. Peng, B., Wan, C., Dong, S., Lin, J., ... Y. S.-... on S. G., & 2016, undefined. (n.d.). A two-stage pattern recognition method for electric customer classification in smart grid. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7778853/?casa_token=oJsEujGLjKkAAAAA:g2nGekjvrahiiBzz4Whsfvf y8w6GwPgJspfEW2M5J6UlvS3FOsb-0tm2FN284q9-N_WGrPDSI94D1w
- 35. Peng, T., & Zuo, W. (2006). Data Mining for Network Intrusion Detection System in Real Time. In *IJCSNS International Journal of Computer Science and Network Security* (Vol. 6, Issue 2).
- Perez, D., Astor, M., ... D. A.-2017 X. L. A., & 2017, undefined. (n.d.). Intrusion detection in computer networks using hybrid machine learning techniques. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/8226392/
- 37. Pongle, P., Applications, G. C.-I. J. of C., & 2015, undefined. (2015). Real time intrusion and wormhole attack detectionininternetofthings.*Citeseer*, 121(9), 975–8887.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d237886c50e4663311e59012593fe5253eb387a
- Prabhakar, P., Arora, S., Khosla, A., ... R. B.-S. and, & 2022, undefined. (n.d.). Cyber Security of Smart Metering Infrastructure Using Median Absolute Deviation Methodology. *Hindawi.Com.* Retrieved April 15, 2023, from https://www.hindawi.com/journals/scn/2022/6200121/
- 39. Professor, A. (2015). A Survey-Comparative Study on Intrusion Detection System. *International Journal of Advanced Research in Computer and Communication Engineering*, *4*. https://doi.org/10.17148/IJARCCE.2015.4794
- Radovanovic, D., Unterweger, A., Eibl, G., Engel, D., & Reichl, J. (2022). How unique is weekly smart meter data? Energy Informatics, 5. https://doi.org/10.1186/S42162-022-00205-8
- Revathi, S., ... A. M. E. R. & T. (IJERT, & 2013, undefined. (n.d.). A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. *Academia.Edu*. Retrieved April 15, 2023, from https://www.academia.edu/download/65451210/a_detailed_analysis_on_nsl_kdd_dataset_using_IJERTV2IS120804.pd f
- 42. Roy, D., Information, D. S.-2019 I. C. on, & 2019, undefined. (n.d.). Network intrusion detection in smart grids for imbalanced attack types using machine learning models. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/8939744/?casa_token=oTk-jaHPRFcAAAAA:NV78nzBs9qvHW1YCe5-MM_i1dzkNTHF9qKNe-_blepmlTR33KWnuDohbXhn6mVosoZJr68Z0uI71w

- 43. Sadek, R., Soliman, M., Computer, H. E.-I. J. of, & 2013, undefined. (n.d.). Effective anomaly intrusion detection system based on neural network with indicator variable and rough set reduction. *Citeseer*. Retrieved April 15, 2023, from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=529308f1120942793939dfe2b146fdc151cabb66
- 44. Salman, T., Bhamare, D., Erbad, A., ... R. J.-2017 I. 4th, & 2017, undefined. (n.d.). Machine learning for anomaly detection and categorization in multi-cloud environments. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7987183/?casa_token=-lPj14T1XNAAAAAA:qxndiVLd78-ArmCJXxBVkBtr9kgAnPSy7yw_7NmecO6Z-ebPiU2G2RIJSTa77LZP8QsGZ2rKlx8QdQ
- 45. Sayar, A., Pawar, S., Computer, V. M.-I. J. of, & 2014, undefined. (2014). A review of intrusion detection system in computer network. *Academia.Edu*, 3(2), 700–703. https://www.academia.edu/download/33100399/V3I2201499a46.pdf
- Sedjelmaci, H., ... S. S.-2016 I. international, & 2016, undefined. (n.d.). A lightweight anomaly detection technique for low-resource IoT devices: A game-theoretic methodology. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7510811/
- 47. Sedjelmaci, H., ... S. S.-I. T. on, & 2017, undefined. (n.d.). An accurate security game for low-resource IoT devices. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7920414/
- 48. Singh, S., Grid, A. M.-I. T. on S., & 2017, undefined. (n.d.). Deep sparse coding for non-intrusive load monitoring. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7847445/?casa_token=rCJQRDYDXY8AAAAA:F5JACJ9N2LK6xWnU0Yj5Qx68mFr27uw2olgobxbnaOD4IgDM6XyLCF-YA2huK-DS8oSgEQ3FfL6Ig
- Stiawan, D., Idris, M., of, A. A.-I. J., & 2011, undefined. (2011). Characterizing network intrusion prevention system. *Repository. Unsri.Ac.Id*, 14(1), 975–8887. https://repository.unsri.ac.id/8337/
- Summerville, D., ... K. Z.-2015 I. 34th, & 2015, undefined. (n.d.). Ultra-lightweight deep packet anomaly detection for Internet of Things devices. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7410342/
- 51. Sun, C., Cardenas, D., ... A. H.-I. T. on, & 2020, undefined. (n.d.). Intrusion detection for cybersecurity of smart meters. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/9144275/?casa_token=aIszSZKCPxUAAAAA:Mi_bdm3BkZJEJh5ipBT XWkrnwCEAs6DsFTTD2ovMNxBJ-HdHsmJ0Mqf9OOrnEqvyXeuG2yAr2xfTxQ
- 52. Tabrizi, F., International, K. P.-2014 I. 15th, & 2014, undefined. (n.d.). A model-based intrusion detection system for smart meters. *leeexplore.leee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/6754583/?casa_token=SJsuD8V_UXwAAAAA:LnigfrkAipvrhAv3zaUM ZC8eGHhxuL-10FWZpMux3RR9v4rmwGtnZlNy7mep3Cz7kB5llFbtvgophg
- 53. Tama, B., Conferences, K. R.-M. W. of, & 2018, undefined. (n.d.). An integration of pso-based feature selection and random forest for anomaly detection in iot network. *Matec-Conferences.Org.* https://doi.org/10.1051/matecconf/201815901053
- 54. Tjhai, G., Furnell, S., Papadaki, M., Security, N. C.-C. &, & 2010, undefined. (n.d.). A preliminary two-stage alarm correlation and filtering system using SOM neural network and K-means algorithm. *Elsevier*. https://doi.org/10.1016/j.cose.2010.02.001
- Trilles, S., Belmonte, Ö., ... S. S.-I. J. of, & 2017, undefined. (2016). A domain-independent methodology to analyze IoT data streams in real-time. A proof of concept implementation for anomaly detection from environmental data. *Taylor* & *Francis*, 10(1), 103–120. https://doi.org/10.1080/17538947.2016.1209583
- Tsitsiroudi, N., ... P. S.-2016 9th I., & 2016, undefined. (n.d.). EyeSim: A mobile application for visual-assisted wormhole attack detection in IoT-enabled WSNs. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/7543976/
- 57. Uddin, M., Rehman, A. A., Uddin, N., Memon, J., Alsaqour, R., & Kazi, S. (2013). Signature-based Multi-Layer Distributed Intrusion Detection System using Mobile Agents. *Academia.Edu*, 15(1), 79–87. https://www.academia.edu/download/69250334/Signature-based_Multi-Layer_Distributed_20210909-2089-hf0acs.pdf
- 58. Venkatesan, R., Shao, Y., ... M. W.-2019 I., & 2019, undefined. (n.d.). Magnet: A modular accelerator generator for neural networks. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/8942127/?casa_token=gUVeH3po2VIAAAAA:l9F5TKk9mifP8TmmjYu wpzWBpawhCBBcemI6v3POUeP5D5AvRplsdNGEsto7CICA1pXi-Jdp8bav-Q
- 59. Viinikka, J., Debar, H., Mé, L., Lehikoinen, A., Fusion, M. T.-I., & 2009, undefined. (2009). Processing intrusion detection alert aggregates with time series modeling. *Elsevier*. https://doi.org/10.1016/j.inffus.2009.01.003
- Yu, T., Wang, X., Journal, A. S.-I. I. of T., & 2017, undefined. (n.d.). Recursive principal component analysis-based data outlier detection and sensor data aggregation in IoT systems. *Ieeexplore.Ieee.Org.* Retrieved April 15, 2023, from https://ieeexplore.ieee.org/abstract/document/8048463/
- Zhao, S., Li, W., Zia, T., on, A. Z.-2017 I. 15th I. C., & 2017, undefined. (2017). A dimension reduction model and classifier for anomaly-based intrusion detection in internet of things. *Ieeexplore.Ieee.Org.* https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.141