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ABSTRACT 

We will use the notions of real axis and imaginary axis to construct by orthogonal superposition a complex plan with complex base of module 
𝜌 = √1 = 1 that is analogous to the set C of complex numbers. Then we will superimpose the three complex planes to obtain the hyper-
space of six (06) dimensions. We will thus arrive at the algebra of six (06) dimension: three (03) real dimensions and three (03) imaginary 
dimensions. The construction of the algebra requires developing and defining a commutative multiplication table using the exponential no-
tations of Euler's formula. What we will generalize, by defining new multiplication rules, by to the notions of “the real product” and “imaginary 
product”; which we will call “Euler products”. This superposition reveals two new complex bases with different imaginary modules: √2  ; and 

√3 in the hyper-space of six dimensions.  What is magical about this multiplication, is the impression we have of jumping from one orbital to 
another. 
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1 INTRODUCTION 

This text is a geometric approach to construct a commutative, associative, bilinear and unitary algebraic structure of “superimposed 
hyper-complex” numbers for dimensions 𝑛 ∈ ℕ. We know that the set ℂ of complex numbers is defined as an extension of the set ℝ  of 
real numbers containing an imaginary number denoted 𝑖 ; such that:  𝑖2 = −1. Any complex number  𝑠  can then be written in the form: 
𝑠 =   𝑥 + 𝑖𝑦 (where 𝑥 and 𝑦 are real numbers). 
Complex numbers were gradually introduced in the 16th century by the Italian mathematical school (Jérôme Cardan, Raphaël Bombelli, 
Tartaglia…) in order to express the solutions of third degree equations in complete generality by Cardan's formulas, in using in particular 
negative square “numbers”. We can provide the set of complex numbers with an addition and a multiplication, which make it a com-
mutative field containing the field of real numbers. 
In 1806, while running a bookstore in Paris, the Swiss Jean Robert Argand published a geometric interpretation of complex numbers 

as points in the plane, by corresponding the complex number     𝑎 + 𝑏√−1 ; to the unique point of the coordinate plane (a; b). For 
this reason, the plane, seen as a set of complex numbers, is sometimes called the Argand plane. Also the Frenchman Jacques Fréderic 

Français, who discovered the work of Argand adds that; geometrically the imaginary number √−1 is the image in the complex plane 

(Argand plane) of the real number 1 by the rotation with center O and angle 𝜃 =  
𝜋

2
   and note  √−1 = 1𝜋

2
 . To this must be added the 

publications of Abbé Buée, the Danish and Norwegian Caspar Wessel and others in the development of the geometric aspect of com-
plex numbers. 
However, this geometric conception of an algebraic tool clashes with the logical sense of certain mathematicians of the time. It was 
only when Gauss and de Cauchy took up this idea that this conception acquired its letters of nobility. Thus, the geometric aspect of 
complex numbers develops; they are associated with vectors or points on the plane. The transformations of the plan are then expressed 
in the form of complex transformations.   Which allowed William Rowan Hamilton to create his quaternions. In 1843 Hamilton who 
was the first to give the algebraic writing of a hyper-complex number (quaternions) in the   𝑞 = 𝑥 + 𝑖𝑦 + 𝑗𝑧 + 𝑘𝑡 (where  𝑥 ; 𝑦 ; 𝑧 and 
t are real numbers and 𝑖 ; 𝑗 and 𝑘 are imaginary numbers) ; with one of the conditions  𝑖2 = 𝑗2 = 𝑘2 = −1. 
In mathematics, the term hyper-complex number is used to refer to elements of algebras that are extended or go deeper than complex 
number arithmetic. An accessible and modern definition of a hyper-complex number is given by Kantor and Solodovnikov. They are 
elements of a unitary real algebra (not necessarily associative) of dimension 𝑛 +  1 >  0. 
Hyper-complex numbers are obtained by further generalizing the construction of complex numbers from real numbers by the Cayley-
Dickson construction. This allows complex numbers to be extended into algebras of dimension  2𝑛 (𝑛 ∈ {2 ; 3 ; 4…… }). The best known 
are the algebra of quaternions (of dimension 4), that of octonions (of dimension 8) and that of sedenions (of dimension 16). However, 
increasing the dimension introduces algebraic complications: the multiplication of quaternions is no longer commutative, the multipli-
cation of octonions is, moreover, non-associative and the norm on sedenions is not multiplicative. In the definition of Kantor and 
Solodovnikov, these numbers correspond to anti-commutative bases of type 𝑖𝑚

2 = −1 (avec  𝑚 ∈ {1 ; …… ; 2𝑛 − 1}). Since quaternions and 
octonions provide a similar (multiplicative) norm to the lengths of Euclidean vector spaces of dimensions four and eight respectively, 
they can be associated with points in some higher-dimensional Euclidean spaces. Beyond the octonions, on the other hand, this anal-
ogy falls away since these constructions are no longer normed. 
We will present here a geometric approach by orthogonal superposition of complex plans (with real and imaginary bases). Which, as 
we will see, will have the consequence of giving a commutative, associative, bilinear and unitary algebraic structure to the set of 
numbers that we will call here “superimposed hyper-complex” numbers. 
I would present the construction methods by geometric superposition, which result in a commutative algebra of “superimposed hyper-
complex” numbers. In addition, the introduction of new concepts such as; “Euler bases” obtained using exponential notation of Euler’s 
formula; the “real product” and the “imaginary product”; allowing multiplication to remain commutative. Which gives rise to new 
complex bases, in which the multiplication passes from one base to another in commutative way. These bases have different modules 
and are distributed in a discreet manner. Above all, we will see that the hyper-complex writing                                                                                        
  𝑞 = 𝑥 + 𝑖𝑦 + 𝑗𝑧 + 𝑘𝑡  of quaternions defined by Hamilton, associated with the “real product” and the “imaginary product”, describes 
a state of superposition. 

2 SET 𝕊(1; 1) 

2.1 Real axis – Imaginary axis 

Consider a line (𝑑𝑛,∝) provided with a coordinate system (O ;  𝑣𝑛,∝) with  𝑛 ∈ {1 ; 2 ; 3 ; ……… }  and  ∝ ∈ {𝑟 ; 𝑖} where 𝑟 denotes the 

word “real” and 𝑖 denotes the word “imaginary”. We can associate with this axis a real graduation unit |𝑣𝑛,𝑟| = 1 or an imaginary 

graduation unit    |𝑣𝑛,𝑖| = 1; defined by: 

 𝑣𝑛,𝑟
2 = 𝑣𝑛,𝑟  if  𝑣𝑛,𝑟 is real. 
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 𝑣𝑛,𝑖
 2 = −𝑣𝑛,𝑟 if  𝑣𝑛,𝑖  is imaginary. 

Thus any point 𝑀 belonging to (𝑑𝑛,∝) has for affix the number  ℎ𝑀 such that: ℎ𝑀 = 𝑎𝑛,∝𝑣𝑛,∝ 

Thus  ℎ𝑀 is a linear combination with real coefficient 𝑎𝑛,∝ ∈ ℝ and a canonical basis   {𝑣𝑛,∝} ; (with 𝑛 ∈ {1; 2; 3;… } ; ∝ ∈ {𝑟 ; 𝑖}). 

2.2 Algebraic space 𝕊1,r dimension 1 – Vector space 𝕊1,i dimension 1 

We thus define the set 𝕊𝑛,∝  the set of numbers  ℎ  affixes of the points 𝑀 of a line (𝑑𝑛,∝) and which are written in the form: 

ℎ = 𝑎𝑛,∝𝑣𝑛,∝ (Where 𝑎𝑛,∝ ∈ ℝ and 𝑣𝑛,∝ being a real or imaginary one). 

2.2.1 Algebraic space 𝕊1,r 
An algebraic space denoted 𝕊1,𝑟  such that any real number ℎ ∈ 𝕊1,𝑟 is written ℎ = 𝑥1,𝑟𝑣1,𝑟 (where 𝑣1,𝑟 is real and 𝑥1,𝑟 ∈ ℝ). Under 
these conditions, we can also show that 𝕊1,𝑟  is an ℝ-Algebra of dimension 1, provided with the internal operations + and × from 𝕊1,𝑟 

to 𝕊1,𝑟  defined by: 
If  𝑣1,𝑟 is a real base we have:  

{
ℎ + ℎ′ = 𝑥1,𝑟𝑣1,𝑟 + 𝑥1,𝑟′𝑣1,𝑟 = (𝑥1,𝑟 + 𝑥1,𝑟′)𝑣1,𝑟                                 

ℎ × ℎ′ = 𝑥1,𝑟𝑣1,𝑟  ×  𝑥1,𝑟′𝑣1,𝑟 = (𝑥1,𝑟 × 𝑥1,𝑟′)𝑣1,𝑟
2 = 𝑥1,𝑟𝑥1,𝑟′𝑣1,𝑟 

  

Since the addition of real numbers is commutative, associative and admits 0 as a neutral element and just as the multiplication of real 
numbers is commutative, associative, distributive with respect to addition and admits 1 as a neutral element then we have: 

 ℎ + ℎ′ = ℎ′ + ℎ  
 ℎ + 0𝕊 = ℎ  
 ℎ × ℎ′ = ℎ′ × ℎ  

 𝑣1,𝑟 × ℎ = 𝑣1,𝑟 × (𝑥1,𝑟𝑣1,𝑟) = 𝑥1,𝑟𝑣1,𝑟 × 𝑣1,𝑟 = 𝑥1,𝑟𝑣1,𝑟
2 = 𝑥1,𝑟𝑣1,𝑟 = ℎ  

𝕊1,𝑟  is an associative, commutative bilinear and unitary algebra on  ℝ. 

2.2.2 The vector space 𝕊1,i 
The vector space denoted 𝕊1,𝑖 is such that any imaginary number ℎ ∈ 𝕊1,𝑖 is written  ℎ = 𝑦1,𝑖𝑣1,𝑖 (where 𝑣1,𝑖 is an imaginary basis 
and 𝑦1,𝑖 ∈ ℝ). Under these conditions, we can show that the set 𝕊1,𝑖 is a vector R-Space equipped with the internal operation + from 

 𝕊1,𝑖 to  𝕊1,𝑖 defined by: 

If 𝑣1,𝑖 is an imaginary basis, we have: ℎ + ℎ′ = 𝑦1,𝑖𝑣1,𝑖 + 𝑦1,𝑖′𝑣1,𝑖 = (𝑦1,𝑖 + 𝑦1,𝑖′)𝑣1,𝑖 

Since the addition of real coefficients is commutative, associative and admits 0 as a neutral element then the internal operation + 
from 𝕊𝟏,𝒊 to 𝕊𝟏,𝒊 verifies the following axioms: 

 ℎ + ℎ′ = ℎ′ + ℎ  
 (ℎ + ℎ′) + ℎ′′ = ℎ + (ℎ′ + ℎ′′)  
 ℎ + 0𝕊 = ℎ  
 If     ℎ + ℎ′ = 0𝕊        then      ℎ′ = −ℎ  

Likewise, the multiplication of real numbers being commutative, associative, distributive with respect to addition and admits 1 as a 
neutral element, then the external operation × from  𝕊1,𝑖 to  𝕊1,𝑖 verifies the following axioms: 
If 𝜆 ∈ ℝ and 𝜇 ∈ ℝ we have: 

 1 × ℎ = ℎ  
 𝜆(𝜇ℎ) = (𝜆𝜇)ℎ  
 𝜆(ℎ + ℎ′) = 𝜆ℎ + 𝜆ℎ′  
 (𝜆 + 𝜇)ℎ = 𝜆ℎ + 𝜇ℎ  
 ℎ × 0 = 0𝕊  

Which gives 𝕊1,𝑖 a vector space structure on ℝ. 

2.3 Hyper-complex algebraic space 𝕊(1; 1) 

2.3.1 Hyper-complex basis {𝒗1,r  ; 𝒗2,i } 
We can define a hyper-complex plane 𝑃(1;1) as being a plane formed by two perpendicular axes: an axis with a real base 𝑣1,𝑟  and an 

imaginary base axis  𝑣2,𝑖. We associate with a hyper-complex plan a direct direction of rotation from the real axis towards the imaginary 

axis. If we consider the hyper-complex basis {𝑣1,𝑟  ;  𝑣2,𝑖} defined by: 

{
 
 

 
 1(𝑣 1,𝑟 ; 𝑣 2,𝑖)   =   𝑣1,𝑟                          

𝑣1,𝑟
2 = 𝑣1,𝑟                                          

𝑣2,𝑖
  2  =  −𝑣1,𝑟                                      
𝑣1,𝑟  ×  𝑣2,𝑖  = 𝑣2,𝑖  ×  𝑣1,𝑟  = 𝑣2,𝑖
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We can associate at any point of the hyper-complex plane (𝑂; 𝑣1,𝑟  ;  𝑣2,𝑖); a hyper-complex number ℎ. This number being the sum of a 

number ℎ𝑟  affix of a point on the real line (𝑑1,𝑟) and of a number ℎ𝑖 affix of a point on the imaginary line (𝑑2,𝑖) ; such as: 

   ℎ = ℎ𝑟 + ℎ𝑖 where ℎ𝑟 ∈ 𝕊1,𝑟 and ℎ𝑖 ∈ 𝕊1,𝑖. 

We then have: ℎ = 𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑖𝑣2,𝑖 

We can add that the hyper-complex number ℎ of the hyper-complex base {𝑣1,𝑟 ;  𝑣2,𝑖} can be written in several other forms: 

 ℎ = 𝜌(𝑣1,𝑟 𝑐𝑜𝑠 𝜃 + 𝑣2,𝑖 𝑠𝑖𝑛 𝜃) with 𝜃 ∈ ℝ such that: 

{
 
 

 
 𝜌 = √𝑥1

2 + 𝑦2
2

cos 𝜃 =
𝑥1

√𝑥1
2+𝑦2

2

sin 𝜃 =
𝑦2

√𝑥1
2+𝑦2

2

 

 ℎ = 𝜌𝑒𝜃𝑣2,𝑖  with 𝜃 ∈ ℝ 

We can demonstrate it using the Taylor series that:  𝑒𝜃𝑣2,𝑖 = 𝑣1,𝑟 cos 𝜃 + 𝑣2,𝑖 sin 𝜃 with  𝜃 ∈ ℝ. 

The Taylor series expansion of the exponential function of the real variable 𝑡 can be written: 

𝑒𝑡 =
𝑡0

 0! 
+
𝑡1

 1! 
+
𝑡2

 2! 
+
𝑡3

 3! 
+
𝑡4

 4! 
+ ⋯ =∑

𝑡𝑛

𝑛!

∞

𝑛=0

 

In the hyper-complex basis {𝑣1,𝑟 ;  𝑣2,𝑖} ; in particular for 𝑡 = 𝜃𝑣2,𝑖  with real  𝜃, we have: 

𝑒𝜃𝑣2,𝑖 =   ∑
(𝜃𝑣2,𝑖)

𝑛

𝑛!

∞

𝑛=0

 =∑
𝑣2,𝑖

𝑛 𝜃
𝑛

𝑛!

∞

𝑛=0

 

This series can be separated into two by grouping the even and odd terms. Indeed, a rearrangement of the order of the terms of the 
series is possible here, because it is an absolutely convergent series, in other words a summable family. We then obtain, using the fact 
that: 

𝑣2,𝑖
2𝑘 = (𝑣2,𝑖

2)
𝑘
= (−𝑣1,𝑟)

𝑘
  and 𝑣2,𝑖

2𝑘+1 = 𝑣2,𝑖
2𝑘𝑣2,𝑖  = (−𝑣1,𝑟)

𝑘
𝑣2,𝑖 

So 

𝑒𝜃𝑣2,𝑖 =   ∑
𝑣2,𝑖

2𝑘𝜃2𝑘

2𝑘!

∞

𝑘=0

+∑
𝑣2,𝑖

2𝑘+1𝜃2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

𝑒𝜃𝑣2,𝑖 =   ∑
(−𝑣1,𝑟)

𝑘
𝜃2𝑘

2𝑘!

∞

𝑘=0

+∑
(−𝑣1,𝑟)

𝑘
𝑣2,𝑖 𝜃

2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

𝑒𝜃𝑣2,𝑖 =   ∑
(−1)𝑘(𝑣1,𝑟)𝜃

2𝑘

2𝑘!

∞

𝑘=0

+∑
(−1)𝑘𝑣1,𝑟𝑣2𝑖 𝜃

2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

𝑒𝜃𝑣2,𝑖 =   𝑣1,𝑟∑
(−1)𝑘𝜃2𝑘

2𝑘!

∞

𝑘=0

+ 𝑣1,𝑟𝑣2,𝑖∑
(−1)𝑘𝜃2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

𝑒𝜃𝑣2,𝑖 =   𝑣1,𝑟∑
(−1)𝑘𝜃2𝑘

2𝑘!

∞

𝑘=0

+ 𝑣2,𝑖∑
(−1)𝑘 𝜃2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

We thus see the Taylor series expansions of the cosine and sine functions appear: 

cos 𝜃 =   ∑
(−1)𝑘𝜃2𝑘

2𝑘!

∞

𝑘=0

       and      sin 𝜃 =∑
(−1)𝑘 𝜃2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

Which, by replacing  e𝜃𝑣2,𝑖, in the previous expression, gives in the hyper-complex basis  {𝑣1,𝑟 ;  𝑣2,𝑖}:   𝑒𝜃𝑣2,𝑖 =  𝑣1,𝑟 cos 𝜃 + 𝑣2,𝑖 sin 𝜃 

So h = ρ(𝑣1,𝑟 cos 𝜃 + 𝑣2,𝑖 sin 𝜃)   ⟺    h = ρ𝑒𝜃𝑣2,𝑖 

2.3.2 Euler identity and “Euler basis” 

According to the equality     𝑒𝜃𝑣2,𝑖 =  𝑣1,𝑟 cos 𝜃 + 𝑣2,𝑖 sin 𝜃  we have: 

 𝑒2𝑘𝜋𝑣2,𝑖 =   𝑣1,𝑟      if     𝜃 = 2𝑘𝜋  (we take 𝑘 = 0) 

 𝑒
𝜋

2
𝑣2,𝑖 = 𝑣2,𝑖           if    𝜃 =

𝜋

2
 

 𝑒𝜋𝑣2,𝑖 = −𝑣1,𝑟        if    𝜃 = 𝜋 
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The Euler identity in this basis becomes 𝑒𝜋𝑣2,𝑖 + 𝑣1,𝑟 = 0 

By definition, we call the Euler base the base {𝑣1,𝑟 ;  𝑣2,𝑖}; such as: {
𝑣1,𝑟 = 𝑒2𝑘𝜋𝑣2,𝑖

𝑣2,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖     

   

So if 𝑣1,𝑟 = 1 and 𝑣2,𝑖 = 𝑖 then 𝕊(1;1) = ℂ 

2.3.3 Direct similarity matrix of a hyper-complex number 
For a hyper-complex number h = 𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑟𝑣2,𝑖 of dimension 2 its corresponding direct similarity matrix is written as follows: 

ℳ2(ℎ) = (
𝑥1,𝑟 −𝑦2,𝑖
𝑦2,𝑖 𝑥1,𝑟

) 

2.4 Operations in 𝕊(1 ; 1) 
By the following steps we will show that the set 𝕊(1;1) is an associative, commutative, bilinear and unitary algebra on the field of real 

numbers ℝ in the hyper-complex base {𝑣1,𝑟  ;  𝑣2,𝑖} 

According to the equalities:   h = ρ(𝑣1,𝑟 cos 𝜃 + 𝑣2,𝑖 sin 𝜃)  whith 𝜃 ∈ ℝ 

We can clearly see that the rules of addition and multiplication in 𝕊(1;1) are the same as those in ℂ. 

2.4.1 Addition (internal operation +)  

The addition of two hyper-complex numbers of dimension 2 in the hyper-complex basis {𝑣1,𝑟 ;  𝑣2,𝑖}; ℎ = 𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑖𝑣2,𝑖 and          

ℎ′ = 𝑥1,𝑟
′𝑣1,𝑟 + 𝑦2,𝑖

′𝑣2,𝑖 ; are then defined by: 

ℎ + ℎ′ = (𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑖𝑣2,𝑖) + (𝑥1,𝑟
′𝑣1,𝑟 + 𝑦2,𝑖

′𝑣2,𝑖)  

ℎ + ℎ′ = (𝑥1,𝑟 + 𝑥1,𝑟
′)𝑣1,𝑟 + (𝑦2,𝑖 + 𝑦2,𝑖

′)𝑣2,𝑖  

We know that the addition of real coefficients is commutative, associative and admits 0 as a neutral element; we deduce that internal 
operation + (addition) in 𝕊(1;1) is a commutative, associative operation and admits 0𝕊 as a neutral element. 

2.4.2 Multiplication (internal operation ×) 

Similarly, the multiplication of two hyper-complex numbers of dimension 2 in the hyper-complex base {𝑣1,𝑟  ;  𝑣2,𝑖} is then defined by 

the table: 

× 𝑣1,𝑟 𝑣2,𝑖 

𝑣1,𝑟 𝑣1,𝑟 𝑣2,𝑖 

𝑣2,𝑖 𝑣2,𝑖 −𝑣1,𝑟 

Table 1: multiplication table of base {𝑣1,𝑟 ;  𝑣2,𝑖} 

We thus obtain: 

ℎ1 × ℎ2 = (𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑖𝑣2,𝑖) × (𝑥1,𝑟
′𝑣1,𝑟 + 𝑦2,𝑖

′𝑣2,𝑖)  

ℎ1 × ℎ2 = (𝑥1,𝑟𝑥1,𝑟
′ − 𝑦2,𝑖𝑦2,𝑖

′)𝑣1,𝑟 + (𝑥1,𝑟𝑦2,𝑖
′ + 𝑥1,𝑟

′𝑦2,𝑖)𝑣2,𝑖  

Likewise we know that the multiplication of real coefficients is commutative, associative, distributive with respect to addition and 
admits 1 as a neutral element; thus we deduce that the internal operation × (multiplication) in 𝕊(1;1) is a commutative, associative, 

bilinear operation and admits  𝑣1,𝑟   as a neutral element. 
We can conclude that 𝕊(1;1) has the internal operations + and ×; has the same properties as those in  ℂ. Thus  𝕊(1;1)) is an associative, 

commutative, unitary and bilinear algebra on the set of real numbers ℝ. 

2.4.3 Hyper-complex bases {𝒗2,r  ; 𝒗3,i }  and {𝒗3,r  ; 𝒗1,i } 

By the same approach we will show that the set  𝕊(1;1)  associated with the bases {𝑣2,𝑟  ;  𝑣3,𝑖} and {𝑣3,𝑟 ;  𝑣1,𝑖}  is an associative, com-

mutative, unitary and bilinear algebra on the field ℝ of real numbers: 

 Euler basis {𝒗2,r  ; 𝒗3,i } 

The hyper-complex basis {𝑣2,𝑟 ;  𝑣3,𝑖} ; is defined as follows: 

 𝑒𝜃𝑣3,𝑖 =  𝑣2,𝑟 cos 𝜃 + 𝑣3,𝑖 sin 𝜃 

 𝑒2𝑘𝜋𝑣3,𝑖 = 𝑣2,𝑟        we take  𝑘 = 0 

 𝑒
𝜋

2
𝑣3,𝑖 = 𝑣3,𝑖  

 𝑒𝜋𝑣3,𝑖 =  −𝑣2,𝑟  
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The Euler identity in the base {𝑣2,𝑟 ;  𝑣3,𝑖}  becomes 𝑒𝜋𝑣3,𝑖 + 𝑣2,𝑟 = 0 

Likewise we obtain its Euler base {𝑣2,𝑟  ;  𝑣3,𝑖} ; such as: {
𝑣2,𝑟 = 𝑒2𝑘𝜋𝑣3,𝑖

𝑣3,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖     

   

Its associated multiplication table is: 

× 𝑣2,𝑟 𝑣3,𝑖 

𝑣2,𝑟 𝑣2,𝑟 𝑣3,𝑖 

𝑣3,𝑖 𝑣3,𝑖 −𝑣2,𝑟 

Table 2: multiplication table of base {𝑣2,𝑟 ;  𝑣3,𝑖} 

The direct similarity matrix of a hyper complex number h = 𝑥2,𝑟𝑣2,𝑟 + 𝑦3,𝑖𝑣3,𝑖 of dimension 2 in the basis {𝑣2,𝑟 ;  𝑣3,𝑖} is: 

ℳ2(ℎ) = (
𝑥2,𝑟 −𝑦3,𝑖
𝑦3,𝑖 𝑥2,𝑟

) 

 Euler basis {𝒗3,r  ; 𝒗1,i } 

The hyper-complex basis {𝑣3,𝑟 ;  𝑣1,𝑖} is defined as follows: 

 𝑒𝜃𝑣1,𝑖 =  𝑣2,𝑟 cos 𝜃 + 𝑣1,𝑖 sin 𝜃 

 𝑒2𝑘𝜋𝑣1,𝑖 =  𝑣3,𝑟          we take 𝑘 = 0 

 𝑒
𝜋

2
𝑣1,𝑖 = 𝑣1,𝑖 

 𝑒𝜋𝑣1,𝑖 =  −𝑣1,𝑟 

The Euler identity in the basis {𝑣3,𝑟  ;  𝑣1,𝑖} becomes 𝑒𝜋𝑣1,𝑖 + 𝑣3,𝑟 = 0 

Likewise we obtain its Euler basis {𝑣3,𝑟 ;  𝑣1,𝑖} ; such as: {
𝑣3,𝑟 = 𝑒2𝑘𝜋𝑣1,𝑖

𝑣1,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖    

   

Its associated multiplication table is: 

× 𝑣3,𝑟 𝑣1,𝑖 

𝑣3,𝑟 𝑣3,𝑟 𝑣1,𝑖 

𝑣1,𝑖 𝑣1,𝑖 𝑣3,𝑟 

Table 3: multiplication table of base {𝑣3,𝑟 ;  𝑣1,𝑖} 

The direct similarity matrix of a hyper-complex number h = 𝑥3,𝑟𝑣3,𝑟 + 𝑦1,𝑖𝑣1,𝑖 of dimension 2 in the basis {𝑣3,𝑟 ;  𝑣1,𝑖} is: 

ℳ2(ℎ) = (
𝑥3,𝑟 −𝑦1,𝑖
𝑦1,𝑖 𝑥3,𝑟

) 

To conclude this part we will note: 

𝕊𝑥1,𝑦2  The algebra associated with the base {𝑣1,𝑟 ;  𝑣2,𝑖} with coefficient in ℝ to designate the set 𝕊(1;1) of the affixes ℎ𝑥1,𝑦2  of the points 

of the complex hyper-plane (𝑂 ; 𝑣1,𝑟  ;  𝑣2,𝑖). 

𝕊𝑥2,𝑦3  The algebra associated with the base {𝑣2,𝑟 ;  𝑣3,𝑖} with coefficient in ℝ to designate the set 𝕊(1;1) of the affixes ℎ𝑥2,𝑦3  of the points 

of the complex hyper-plane  (𝑂 ; 𝑣2,𝑟  ;  𝑣3,𝑖). 

𝕊𝑥3,𝑦1   The algebra associated with the base {𝑣3,𝑟  ;  𝑣1,𝑖} with coefficient in ℝ to designate the set 𝕊(1;1)of the affixes ℎ𝑥3,𝑦1  of the points 

of the complex hyper-plane  (𝑂 ; 𝑣3,𝑟  ;  𝑣1,𝑖). 

3 ALGEBRAIC SPACE 𝕊(3;3) 

3.1 Hyper-space 𝑬(3;3) 
We can define a complex hyper-space 𝐸(3;3) of dimension 6 (3 real dimensions and 3 imaginary dimensions), as being a geometric 

space constituted respectively by the orthogonal superposition of the complex hyper-planes (𝑂 ;  𝑣1,𝑟  ;  𝑣2,𝑖) ; (𝑂 ; 𝑣2,𝑟  ;  𝑣3,𝑖) and 

(𝑂 ; 𝑣3,𝑟  ; 𝑣1,𝑖) in their direct directions of rotation and in the order of the respective “Euler bases”  {𝑣1,𝑟 ;  𝑣2,𝑖} ; 
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{𝑣2,𝑟 ;  𝑣3,𝑖} and {𝑣3,𝑟 ;  𝑣1,𝑖}. 

Then we can associate at any point in the complex hyperspace 𝐸(3;3) with 3 real dimensions and 3 imaginary dimen-

sions {(𝑣1,𝑟 ; 𝑣2,𝑟  ; 𝑣3,𝑟); (𝑣1,𝑖 ;  𝑣2,𝑖 ;  𝑣3,𝑖)}; a hyper-complex number  ℎ. This number being the sum of a number ℎ𝑥1,𝑦2  affix of a point 

of the complex hyper-plane (𝑂 ; 𝑣1,𝑟  ;  𝑣2,𝑖), of a number ℎ𝑥2,𝑦3  affix of a second point of the hyper-complex plane (𝑂 ; 𝑣2,𝑟  ;  𝑣3,𝑖) and 

a number ℎ𝑥3,𝑦1  affix of a third point of the complex hyper-plane  (𝑂 ; 𝑣3,𝑟 ;  𝑣1,𝑖); thus defined in the direct order of their directions of 

rotation such as: 
ℎ𝑥1,𝑦2 + ℎ𝑥2,𝑦3 + ℎ𝑥3,𝑦1    where   ℎ𝑥1,𝑦2 ∈ 𝕊𝑥1,𝑦2  ; ℎ𝑥2,𝑦3 ∈ 𝕊𝑥2,𝑦3   and  ℎ𝑥3,𝑦1 ∈ 𝕊𝑥3,𝑦1. 

We then have:  ℎ = (𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑖𝑣2,𝑖) + (𝑥2,𝑟𝑣2,𝑟 + 𝑦3,𝑖𝑣3,𝑖) + (𝑥3,𝑟𝑣3,𝑟 + 𝑦1,𝑖𝑣1,𝑖) 

ℎ = 𝑥1,𝑟𝑣1,𝑟 + 𝑦2,𝑖𝑣2,𝑖 + 𝑥2,𝑟𝑣2,𝑟 + 𝑦3,𝑖𝑣3,𝑖 + 𝑥3,𝑟𝑣3,𝑟 + 𝑦1,𝑖𝑣1,𝑖  
ℎ = 𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟 + 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖  
So the writing of the number h includes two parts: 
A real part    𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟 
An imaginary part    𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖 

So if we put  𝑞𝑟 =   𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟   and 𝑞𝑖 =   𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖 
We have: ℎ = 𝑞𝑟 + 𝑞𝑖 

 𝑞𝑟  is a linear combination with real base of dimension 3. 

 𝑞𝑖 is a linear combination with an imaginary base of dimension 3. 
We will thus say that the “superimposed hyper-complex” numbers ℎ of dimension 6 are obtained geometrically by orthogonal super-
position. So by definition the set  𝕊(3;3) is the set of “superimposed hyper-complex” numbers ℎ of dimension 6. 

We can therefore retain that the complex space 𝐸(3;3) is geometrically the superposition of two 3 dimensional geometric spaces: a real 

space of dimension 3 with real bases {𝑣1,𝑟 ; 𝑣2,𝑟  ; 𝑣3,𝑟} and an imaginary space of dimension 3 with imaginary bases {𝑣1,𝑖 ;  𝑣2,𝑖 ;  𝑣3,𝑖}. 

We note 𝐸(3;3) = {(𝑣1,𝑟 ; 𝑣2,𝑟 ; 𝑣3,𝑟); (𝑣1,𝑖 ;  𝑣2,𝑖 ;  𝑣3,𝑖)}. 

We can clearly see that with this geometric and orthogonal superposition we obtain a well-defined writing of “hyper-complex super-
imposed” numbers. However, if we posit the equality  𝑥1,𝑟𝑣1,𝑟  +  𝑥2,𝑟𝑣2,𝑟  +  𝑥3,𝑟𝑣3,𝑟  =  𝑥 we obtain the Hamilton quaternions: 
𝑞 = 𝑥 + 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖  
 Which can be interpreted by the fact that: the real space of quaternions is a space where real dimensions are intertwined.  
This is why the set of “superimposed hyper-complex” numbers should be denoted ℍ𝑆  in honor of Hamilton who discovered them 
almost two centuries ago. It is true that he, himself was aware that writing hyper-complex works was only possible in this form. As if, 
in his subconscious, he knew that his numbers described states of superposition. What is certain is that if at that time, we knew the 
states of quantum superposition; he would have such an interpretation of his discovery. 
To better visualize the construction of all hyper-complex numbers by geometric superposition; let us note in a circular manner: 

For real bases {

𝑣1,𝑟 = 1𝑥 

𝑣2,𝑟 = 1𝑦
𝑣3,𝑟 = 1𝑧

  and for imaginary bases {

𝑣1,𝑖 = 𝑖𝑥 

𝑣2,𝑖 = 𝑖𝑦
𝑣3,𝑖 = 𝑖𝑧

  with {

𝑖𝑦
2 = −1𝑥 

𝑖𝑧
2 = −1𝑦

𝑖𝑥
2 = −1𝑧

  

Under these conditions, we will see that we can obtain associative, commutative, unitary and bilinear algebra. However, for the rest 

of our study, let us keep the notations {𝑣1,𝑟  ; 𝑣2,𝑟  ; 𝑣3,𝑟  } for the real bases and  {𝑣1,𝑖 ;  𝑣2,𝑖 ;  𝑣3,𝑖} for the imaginary bases. 

3.2 Equality of two “superimposed hyper-complex” numbers. 
Two “superimposed hyper-complex” numbers are equal if and only if they have the same real bet and the same imaginary part. 
Considering  ℎ = 𝑞𝑟 + 𝑞𝑖 and  ℎ′ = 𝑞𝑟

′ + 𝑞𝑖
′ then: ℎ = ℎ′   ⟺  (𝑞𝑟 = 𝑞𝑟

′    et   𝑞𝑖 = 𝑞𝑖
′) 

ℎ = ℎ′       ⟺     {

𝑥1,𝑟 = 𝑥1,𝑟
′

𝑥2,𝑟 = 𝑥2,𝑟
′

𝑥3,𝑟 = 𝑥3,𝑟
′

 and   {

𝑦1,𝑖 = 𝑦1,𝑖
′

𝑦2,𝑖 = 𝑦2,𝑖
′

𝑦3,𝑖 = 𝑦3,𝑖
′

 

So we can give the following definitions: 
 Two “superimposed hyper-complex” numbers are said to be “equal-real” if they have the same real part and different imag-

inary parts. 
Considering ℎ = 𝑞𝑟 + 𝑞𝑖 and   ℎ′ = 𝑞𝑟

′ + 𝑞𝑖
′ then: 

ℎ and  ℎ′ are said to be “equal-real” if and only if  𝑞𝑟 = 𝑞𝑟
′    and    𝑞𝑖 ≠ 𝑞𝑖

′ 
 Two “superimposed hyper-complex” numbers are said to be “equal-imaginary” if they have the same imaginary part and 

different real parts. 
Considering ℎ = 𝑞𝑟 + 𝑞𝑖 and   ℎ′ = 𝑞𝑟

′ + 𝑞𝑖
′ then: 

ℎ and    ℎ′   are said to be “equal-imaginary” if and only if    𝑞𝑟 ≠ 𝑞𝑟
′ and 𝑞𝑖 = 𝑞𝑖

′. 
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 Two “superimposed hyper-complex” numbers are said to be “distinct” if their real parts are different and if their imaginary 
parts are also different. 

Considering ℎ = 𝑞𝑟 + 𝑞𝑖  and ℎ′ = 𝑞𝑟
′ + 𝑞𝑖

′ then: 
ℎ and  ℎ′ are said to be “distinct” if and only if    𝑞𝑟 ≠ 𝑞𝑟

′ and    𝑞𝑖 ≠ 𝑞𝑖
′. 

3.3 Operation in 𝕊(3 ; 3) 
By the following steps we will also show that 𝕊(3;3) is an associative, commutative, bilinear and unitary algebra on the set of real 

numbers ℝ. 

3.3.1 Addition (internal operation +) 
Considering  ℎ1 and  ℎ2 two “superimposed hyper-complex” numbers of dimension 6 such that: 
ℎ = 𝑞𝑟 + 𝑞𝑖    and ℎ′ = 𝑞𝑟

′ + 𝑞𝑖
′ 

The addition of hyper complex numbers placed in superposition of dimension 6 is then defined by: 
ℎ + ℎ′ = (𝑞𝑟 + 𝑞𝑖) + (𝑞𝑟

′ + 𝑞𝑖
′)  

The addition of real and imaginary numbers being commutative and associative we have: 
ℎ + ℎ′ = (𝑞𝑟 + 𝑞𝑟

′) + (𝑞𝑖 + 𝑞𝑖
′)   where 

𝑞𝑟 + 𝑞𝑟
′ = (𝑥1,𝑟 + 𝑥1,𝑟

′)𝑣1,𝑟 + (𝑥2,𝑟 + 𝑥2,𝑟
′)𝑣2,𝑟 + (𝑥3,𝑟 + 𝑥3𝑟

′)𝑣3,𝑟   

𝑞𝑖 + 𝑞𝑖
′ = (𝑦1,𝑖 + 𝑦1,𝑖

′)𝑣1,𝑖 + (𝑦2,𝑖 + 𝑦2,𝑖
′)𝑣2,𝑖 + (𝑦3,𝑖 + 𝑦3,𝑖

′)𝑣3,𝑖  

Thus, the rules of addition in   𝕊(3;3) are the same as those in  𝕊(1;1). Therefore the addition in   𝕊(3;3)  is a commutative, associative 

operation and admits 0𝕊 as a neutral element. 

3.3.2 Multiplication (internal operation ×) 
Considering ℎ and ℎ′ two “superimposed hyper-complex” numbers of dimension 6 such that: 
ℎ = 𝑞𝑟 + 𝑞ℎ   and   ℎ′ = 𝑞𝑟

′ + 𝑞ℎ
′ 

The multiplication of “superimposed hyper-complex” numbers of dimension 6 is then defined by: 
ℎ × ℎ′ = (𝑞𝑟 + 𝑞ℎ) × (𝑞𝑟

′ + 𝑞ℎ
′)  

ℎ × ℎ′ = 𝑞𝑟 × 𝑞𝑟
′ + 𝑞𝑟 × 𝑞ℎ

′ + 𝑞ℎ × 𝑞𝑟
′ + 𝑞ℎ × 𝑞ℎ

′  
Where: 

𝑞𝑟 × 𝑞𝑟
′ = (𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟) × (𝑥1,𝑟

′𝑣1,𝑟 + 𝑥2,𝑟
′𝑣2,𝑟 + 𝑥3,𝑟

′𝑣3,𝑟)  

𝑞𝑟 × 𝑞𝑖
′ = (𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟) × (𝑦1,𝑖

′𝑣1,𝑖 + 𝑦2,𝑖
′𝑣2,𝑖 + 𝑦3,𝑖

′𝑣3,𝑖)  

𝑞𝑖 × 𝑞𝑟
′ = (𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖) × (𝑥1,𝑟

′𝑣1,𝑟 + 𝑥2,𝑟
′𝑣2,𝑟 + 𝑥3,𝑟

′𝑣3,𝑟)  

𝑞𝑖 × 𝑞𝑖
′ = (𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖) × (𝑦1,𝑖

′𝑣1,𝑖 + 𝑦2,𝑖
′𝑣2,𝑖 + 𝑦3,𝑖

′𝑣3,𝑖)  

We see that writing the product of the “superimposed hyper-complex” numbers ℎ and ℎ’ is too long and requires a multiplication table 
for the bases. 

3.3.3 Hyper-complex bases Multiplication rules 
To establish the multiplication table of the bases of the set 𝕊(3;3); we will use the exponential writing of “Euler bases”. 

Base {𝑣1,𝑟  ;  𝑣2,𝑖} :  {
𝑒2𝑘𝜋𝑣2,𝑖 = 𝑣1,𝑟
𝑒
𝜋

2
𝑣2,𝑖 = 𝑣2,𝑖   

    ;   𝑘 = 0   and with a rotation ℛ
(O ; − 

𝜋

2
)
∶  𝑣1,𝑖

   − 
𝜋

2
     

→    𝑣2,𝑟 

Base  {𝑣2,𝑟 ;  𝑣3,𝑖} :  {
𝑒2𝑘𝜋𝑣3,𝑖 = 𝑣2,𝑟
𝑒
𝜋

2
𝑣3,𝑖 = 𝑣3,𝑖   

    ;   𝑘 = 0  and with a rotation ℛ
(O ; − 

𝜋

2
)
∶  𝑣3,𝑖  

   − 
𝜋

2
     

→    𝑣2,𝑟 

Base {𝑣2,𝑟  ;  𝑣3,𝑖} :   {
𝑒2𝑘𝜋𝑣3,𝑖 = 𝑣2,𝑟
𝑒
𝜋

2
𝑣3,𝑖 = 𝑣3,𝑖   

    ;  𝑘 = 0  and with a rotation  ℛ
(O ; − 

𝜋

2
)
∶   𝑣1,𝑖

  − 
𝜋

2
     

→    𝑣3,𝑟 

So if we know the axis of the imaginary base  𝑒
𝜋

2
𝑣𝑛,𝑖 = 𝑣𝑛,𝑖, we will use the rotation ℛ

(𝑂 ; − 
𝜋

2
)
 of center 𝑂 of angle −

𝜋

2
  to determine 

the axis of the real base corresponding 𝑒2𝑘𝜋𝑣𝑛,𝑖 in the plane of rotation and a transformation  𝑇. The transformation 𝑇 is defined by: 

𝑇(∑𝑣𝑛,𝑖) = ∑𝑣𝑛,𝑟 

Which gives  𝑒2𝑘𝜋𝑣𝑛,𝑖 = 𝑇 ∘ ℛ
(𝑂 ; − 

𝜋

2
)
(𝑣𝑛,𝑖) 

The difficulty here consists of first determining the plane of rotation then the direction of rotation. Let us not forget, that we are no 
longer in 3-dimensional visual space but in 6-dimensional hyperspace. However, for each case; I will propose a plan and a direction of 
rotation, to then give the orientation of the real bases corresponding to each imaginary base. On the other hand, the algebraic writing 
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of Hamilton's quaternions is a perfect mathematical tool; which describes an intertwined real space, where the real bases can be 
everywhere. Thus, determining the orientation of real bases will no longer be a necessity in an interlaced real space. What we need to 
know is that; any direction perpendicular to the imaginary axis, is a possible direction for the corresponding real axis. However, the 
exponential writing of hyper-complex numbers allows us, to do any type of calculation without taking in account geometric aspect. 

3.3.4 Calculation of type (𝒗 n-1,r)2 
𝑣𝑛−1,𝑟 is the real unit carried by the axis perpendicular to the axis of the imaginary unit 𝑣𝑛,𝑖 

We have (𝑣𝑛−1,𝑟)
2
= 𝑣𝑛−1,𝑟 × 𝑣𝑛−1,𝑟 = 𝑒2𝑘𝜋𝑣𝑛,𝑖 ×𝑒2𝑘𝜋𝑣𝑛,𝑖 = 𝑒4𝑘𝜋𝑣𝑛,𝑖  

If we take 𝑘 = 0 then  𝑒4𝑘𝜋𝑣𝑛,𝑖 = 𝑒2𝑘𝜋𝑣𝑛,𝑖 = 𝑒0𝑣𝑛,𝑖 = 𝑣𝑛−1,𝑟 

Therefore (𝑣𝑛−1,𝑟)
2
= 𝑣𝑛−1,𝑟 

3.3.5 Calculation type (𝒗 n,i)2 

We have (𝑣𝑛,𝑖)
2
= 𝑣𝑛,𝑖 × 𝑣𝑛,𝑖 = 𝑒

𝜋

2
𝑣𝑛,𝑖 ×𝑒

𝜋

2
𝑣𝑛,𝑖 = 𝑒𝜋𝑣𝑛,𝑖 = −𝑣𝑛−1,𝑟 

Calculation type 𝑣𝑛−1,𝑟 × 𝑣𝑛,𝑖 = 𝑣𝑛,𝑖 × 𝑣𝑛−1,𝑟 

𝑣𝑛−1,𝑟 × 𝑣𝑛,𝑖 = 𝑒2𝑘𝜋𝑣𝑛,𝑖 ×𝑒
𝜋

2
𝑣𝑛,𝑖 = 𝑒(2𝑘𝜋𝑣𝑛,𝑖+ 

𝜋

2
𝑣𝑛,𝑖)  

If we take 𝑘 = 0 then  𝑒(0𝑣𝑛,𝑖+ 
𝜋

2
𝑣𝑛,𝑖) = 𝑒

𝜋

2
𝑣𝑛,𝑖 = 𝑣𝑛,𝑖 

Therefore 𝑣𝑛−1,𝑟 × 𝑣𝑛,𝑖 = 𝑣𝑛,𝑖 

So we can retain that multiplying a real base by an imaginary base always gives us the imaginary base. 

3.3.6 Calculations of types 𝒔n,r =𝒗 n,r ×v n-1,r and 𝒔n,i = 𝒗 n,i ×v n-1,i 
We start by calculating 𝑠𝑛,𝑖 = 𝑣𝑛,𝑖 × 𝑣𝑛−1,𝑖 then we deduce 𝑠𝑛,𝑟 = 𝑣𝑛,𝑟 × 𝑣𝑛−1,𝑟 geometrically by the rotation ℛ

(O ; − 
𝜋

2
)
 with center 𝑂 

and angle   −
𝜋

2
  and by the transformation 𝑇. 

3.3.7 Euler Base {𝒔1,r  ; s2,i } of module  ρ2=√2 

𝑠2,𝑖 = 𝑣1,𝑖 × 𝑣2,𝑖 = 𝑣2,𝑖 × 𝑣1,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖)  

𝑠1,𝑟 = 𝑣1,𝑟 × 𝑣3,𝑟 = 𝑣3,𝑟 × 𝑣1,𝑟 = 𝑒2𝑘𝜋𝑣2,𝑖 ×𝑒2𝑘𝜋𝑣1,𝑖 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖). 
However we have: 𝑘 = 0 so 𝑠1,𝑟 = 𝑒0(𝑣1,𝑖+𝑣2,𝑖) 
We see that (𝑠2,𝑖)

2
= (𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖)) 2 = 𝑒𝜋(𝑣1,𝑖+𝑣2,𝑖) = −𝑠1,𝑟 

We see the imaginary number 𝑠2,𝑖 appear such that: (𝑠2,𝑖)
2
= −𝑠1,𝑟 

So we can write using Euler's formula: 

 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
 𝑠2,𝑖 = (𝑠1,𝑟 cos

𝜋

2
 +  𝑠2,𝑖 sin

𝜋

2
) = 𝑠2,𝑖 

 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖) = 𝑒2𝑘𝜋𝑠2,𝑖 = (𝑠1,𝑟 cos 2𝑘𝜋  + 𝑠2,𝑖 sin 2𝑘𝜋) = 𝑠1,𝑟 

We must then define the existence of a new real and imaginary base {𝑠1,𝑟  ;  𝑠2,𝑖} of module: 

 𝜌𝑠2,𝑖 = 𝜌2 = |𝑠2,𝑖| = |𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖)| = |𝑣1,𝑖 + 𝑣2,𝑖| = √2 

 𝜌𝑠1,𝑟 = |𝑠1,𝑟| = |𝑒
0(𝑣1,𝑖+𝑣2,𝑖)| = |(𝑒𝑣1,𝑖+𝑣2,𝑖)0| = |1| = 1 

We can determine; geometrically the orientation of the imaginary number by: 

𝑠2,𝑖 = 𝑒
𝜋
2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑣1,𝑖 + 𝑣2,𝑖 

Finally to determine the orientation of the real number  𝑠1,𝑟  of the base {𝑠1,𝑟 ;  𝑠2,𝑖}, we must consider the rotation ℛ
(O ; − 

𝜋

2
)
 in the 

rotation plane (𝑂 ;  𝑣1 ;  𝑣2) and the transformation 

𝑇 (∑𝑣𝑛,𝑖) =∑𝑣𝑛,𝑟 

We find geometrically: 

𝑇 ∘ ℛ
(𝑂 ; − 

𝜋
2)
(𝑣1,𝑖 + 𝑣2,𝑖) = 𝑣1,𝑟 − 𝑣2,𝑟 

Thus geometrically, the orientation of the real number 𝑠1,𝑟 is the same as the number 𝑣1,𝑟 − 𝑣2,𝑟. 

We obtain the base  {𝑠1,𝑟 ;  𝑠2,𝑖} with imaginary module 𝜌2 = √2 and real module 1 in the rotation plane (𝑂 ;  𝑣1 ;  𝑣2) 
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Base {𝑠1,𝑟  ;  𝑠2,𝑖} :   {
𝑠1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖)

𝑠2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖)     

 with 𝑘 = 0 

We can say that, the number  𝑠2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) describes a state of superposition of imaginary numbers  𝑣1,𝑖 and 𝑣2,𝑖. Which means 

that by deduction that: 𝑠1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖)  describes a state of superposition of real numbers 𝑣1,𝑟  and 𝑣2,𝑟 . 

3.3.8 Euler Base  {𝒔2,r  ; 𝒔3,i }  and {𝒔3,r  ; 𝒔1,i }  of module  ρ2=√2 
In the same way, we can deduce that: 

𝑠3,𝑖 = 𝑣2,𝑖 × 𝑣3,𝑖 = 𝑣3,𝑖 × 𝑣2,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 ×𝑒

𝜋

2
𝑣3,𝑖 = 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑣2,𝑖 + 𝑣3,𝑖  

𝑠2,𝑟 = 𝑣1,𝑟 × 𝑣2,𝑟 = 𝑣2,𝑟 × 𝑣1,𝑟 = 𝑒2𝑘𝜋𝑣2,𝑖 ×𝑒2𝑘𝜋𝑣3,𝑖 = 𝑒2𝑘𝜋(𝑣2,𝑖+𝑣3,𝑖)  
We obtain a new base   {𝑠2,𝑟 ;  𝑠3,𝑖} with imaginary module 𝜌2 = √2 and real module 1 in the rotation plane (𝑂 ; 𝑣2 ;  𝑣3). 

Base {𝑠2,𝑟  ;  𝑠3,𝑖} :   {
𝑠2,𝑟 = 𝑒2𝑘𝜋(𝑣2,𝑖+𝑣3,𝑖)

𝑠3,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖)     

 with 𝑘 = 0 

Likewise we have: 

𝑠1,𝑖 = 𝑣1,𝑖 × 𝑣3,𝑖 = 𝑣3,𝑖 × 𝑣1,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣3,𝑖 = 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = 𝑣1,𝑖 + 𝑣3,𝑖  

𝑠3,𝑟 = 𝑣2,𝑟 × 𝑣3,𝑟 = 𝑣3,𝑟 × 𝑣2,𝑟 = 𝑒2𝑘𝜋𝑣3,𝑖 ×𝑒2𝑘𝜋𝑣1,𝑖 = 𝑒2𝑘𝜋(𝑣3,𝑖+𝑣1,𝑖)  
We obtain a new base  {𝑠3,𝑟  ;  𝑠1,𝑖} with imaginary module 𝜌2 = √2 and real module 1  in the rotation plane (𝑂 ; 𝑣3 ;  𝑣1). 

Base {𝑠3,𝑟  ;  𝑠1,𝑖} :   {
𝑠3,𝑟 = 𝑒2𝑘𝜋(𝑣3,𝑖+𝑣1,𝑖)

𝑠1,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖)    

 with 𝑘 = 0 

3.3.9 Set 𝕊(3;3) Multiplication table 
We can associate with multiplication (the × operation) of the 𝕊(3;3) the following table: 

× 𝑣1,𝑟 𝑣2,𝑟 𝑣3,𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 

𝑣1,𝑟 𝑣1,𝑟 𝑠2,𝑟 𝑠1,𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 

𝑣2,𝑟 𝑠2,𝑟 𝑣2,𝑟 𝑠3,𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 

𝑣3,𝑟 𝑠1,𝑟 𝑠3,𝑟 𝑣3,𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 

𝑣1,𝑖 𝑣1,𝑖 𝑣1,𝑖 𝑣1,𝑖 −𝑣3,𝑟 𝑠2,𝑖 𝑠1,𝑖 

𝑣2,𝑖 𝑣2,𝑖 𝑣2,𝑖 𝑣2,𝑖 𝑠2,𝑖 −𝑣1,𝑟 𝑠3,𝑖 

𝑣3,𝑖 𝑣3,𝑖 𝑣3,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠3,𝑖 −𝑣2,𝑟 

Table 4: multiplication table of bases of the set 𝕊(3;3) 

3.3.10 Euler base {𝒖1,r  ; 𝒖2,i } of module ρ3=√3 

Calculation type:  𝑢2,𝑖 = (𝑣𝑛−1,𝑖 × 𝑣𝑛,𝑖) × 𝑣𝑛+1,𝑖 = 𝑣𝑛−1,𝑖 × (𝑣𝑛,𝑖 × 𝑣𝑛+1,𝑖) 

And 𝑢2,𝑟 = (𝑣𝑛−1,𝑟 × 𝑣𝑛,𝑟 ×)𝑣𝑛+1,𝑟 = 𝑣𝑛−1,𝑟 × (𝑣𝑛,𝑟 × 𝑣𝑛+1,𝑟) 

We also obtain a new base  {𝑢1,𝑟  ;  𝑢2,𝑖} of module 𝜌3 = √3 in the rotation plane (𝑂 ; 𝑠2,𝑖 ;  𝑣3). 

We have: 

𝑢2,𝑖 = (𝑣1,𝑖 × 𝑣2,𝑖) × 𝑣3,𝑖 = 𝑣1,𝑖 × (𝑣2,𝑖 × 𝑣3,𝑖) = 𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 ×𝑒

𝜋

2
𝑣3,𝑖   

𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)  

Likewise, we have: 

𝑢1,𝑟 = (𝑣1,𝑟 × 𝑣2,𝑟) × 𝑣3,𝑟 = 𝑣1,𝑟 × (𝑣2,𝑟 × 𝑣3,𝑟) = 𝑒2𝑘𝜋𝑣2,𝑖 ×𝑒2𝑘𝜋𝑣3,𝑖 ×𝑒2𝑘𝜋𝑣1,𝑖  
𝑢1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)  
However we have: k=0 so 𝑠1,𝑟 = 𝑒0(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑟) 
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We see that: (𝑢2,𝑖)
2
= (𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))

2

= 𝑒𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = −𝑢1,𝑟 

We see the imaginary number 𝑢2,𝑖 appear again such that: (𝑢2,𝑖)
2
= −𝑢1,𝑟 

So we can write using Euler's formula: 

 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
𝑢2,𝑖 = (𝑢1,𝑟 cos

𝜋

2
 +  𝑢2,𝑖 sin

𝜋

2
) = 𝑢2,𝑖 

 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒2𝑘𝜋𝑢2,𝑖 = (𝑢1,𝑟 cos 2𝑘𝜋  + 𝑢2,𝑖 sin 2𝑘𝜋) = 𝑢1,𝑟 

We must then define the existence of a new real and imaginary base {𝑢1,𝑟 ;  𝑢2,𝑖} of module: 

 𝜌𝑢2,𝑖 = 𝜌3 = |𝑢2,𝑖| = |𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)| = |𝑣1,𝑖 + 𝑣2,𝑖 + 𝑣3,𝑖| = √3;  

 𝜌𝑢2,𝑟 = 𝜌3 = |𝑢2,𝑟| = |𝑒
0(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑟)| = |(𝑒(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑟))

0

| = |1| = 1 

 We can determine; geometrically the orientation of the imaginary number by: 

𝑢2,𝑖 = 𝑒
𝜋
2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑣1,𝑖 + 𝑣2,𝑖 + 𝑣3,𝑖 

Finally to determine the orientation of the real number 𝑢1,𝑟  of the base {𝑢1,𝑟 ;  𝑢2,𝑖}, we must consider the rotation ℛ
(O ; − 

𝜋

2
)
 in the 

rotation plane(𝑂 ;  𝑠2,𝑖 ;  𝑣3) and the transformation: 

𝑇 (∑𝑣𝑛,𝑖) =∑𝑣𝑛,𝑟 

We find geometrically: 

𝑇 ∘ ℛ
(𝑂 ; − 

𝜋
2)
(𝑣1,𝑖 + 𝑣2,𝑖 + 𝑣3,𝑖) = 𝑣1,𝑟 + 𝑣2,𝑟 − 𝑣3,𝑟 

Thus geometrically, the orientation of the real number 𝑢1,𝑟 of module 1 is the same as the number  𝑣1,𝑟 + 𝑣2,𝑟 − 𝑣3,𝑟. 

We obtain the base   {𝑢1,𝑟 ;  𝑢2,𝑖} with imaginary module 𝜌3 = √3  and real module 1 in the rotation plane (𝑂 ; 𝑠2,𝑖 ;  𝑣3). 

We obtain the base  {𝑢1,𝑟  ;  𝑢2,𝑖} :   {
𝑢1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)

𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)    

     with 𝑘 = 0 

Their geometric interpretation is: in my opinion: 

 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) : describes a state of superposition of imaginary numbers 𝑣1,𝑖 ;  𝑣2,𝑖 and 𝑣3,𝑖 

 𝑢1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) : describes a state of superposition of real numbers 𝑣1,𝑟  ; 𝑣2,𝑟   and 𝑣3,𝑟 

3.4 Priority rules 
Now we need to define some priority rules for multiplication with the number –1. Since the works of Jean Robert Argand, of Jean 
Fréderic Français; we know that multiplying by −1 amounts to making a rotation of angle 𝜋 in the same plane of rotation. What 
happens if we multiply two numbers located in two different planes of rotation? 

We know that in the same plane we have: 𝑒−
𝜋

2
𝑣1,𝑖 = −𝑒

𝜋

2
𝑣1,𝑖    and   −𝑒

𝜋

2
𝑣1,𝑖 = 𝑒− 

𝜋

2
𝑣1,𝑖  

Thus: −𝑒
𝜋

2
𝑣1,𝑖 × −𝑒

𝜋

2
𝑣1,𝑖 = (𝑒

𝜋

2
𝑣1,𝑖)

2

= 𝑒𝜋𝑣1,𝑖 = −𝑒2𝑘𝜋𝑣1,𝑖  

Likewise: −𝑒
𝜋

2
𝑣1,𝑖 × (−𝑒

𝜋

2
𝑣1,𝑖) = 𝑒− 

𝜋

2
𝑣1,𝑖 ×𝑒− 

𝜋

2
𝑣1,𝑖 = 𝑒−𝜋𝑣1,𝑖 = 𝑒𝜋𝑣1,𝑖 = −𝑒2𝑘𝜋𝑣1,𝑖  

In both cases, we find the same result. 
However, if we take two numbers of different rotation planes we will have: 

First: −𝑒
𝜋

2
𝑣1,𝑖 × −𝑒

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖 + 𝑣2,𝑖)  

Then secondly:  –𝑒
𝜋

2
𝑣1,𝑖 × −𝑒

𝜋

2
𝑣2,𝑖 = 𝑒− 

𝜋

2
𝑣1,𝑖 ×𝑒− 

𝜋

2
𝑣2,𝑖 = 𝑒− 

𝜋

2
(𝑣1,𝑖 + 𝑣2,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖 + 𝑣2,𝑖) 

We see that the two approaches give us two opposite results. Here we are faced with the same problem with the imaginary nota-

tion  √−1 ; before Leonard Euler proposed the imaginary notation  𝑖  to replace the number √−1 . Hence, the need to define a priority 

rule for the exponential  𝑒. So keep the second approach as a rule. Not only is it the exponential 𝑒 which gives the orientation of the 

imaginary axes but also it is this approach which verifies Euler's formula. Unless we define a new rule of signs linked to complex super-
position; for non-coplanar bases which, as we know, describe superposition states. If we give priority to the exponential  𝑒; means 
that before multiplying we must raise the negative sign (−) on the exponential  𝑒. After all that, all that remains is to multiply positive 

coefficients (+). This is not surprising, because we know that: −𝑖 = 
1

𝑖
 . Which shows that there is no difference between −𝑖 and 

1

𝑖
 . 

Hence, the need to define a priority rule for multiplying different imaginary bases. 
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Therefore, we must also know that; this priority given to the exponential 𝑒; has the merit of increasing the number of intermediate 
and higher bases. 

3.4.1 Complementary secondary bases. 
So, if we have to multiply: 

𝑒
𝜋

2
𝑣1,𝑖 × (−𝑒

𝜋

2
𝑣2,𝑖) = 𝑒

𝜋

2
𝑣1,𝑖 ×𝑒− 

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖)  

We thus obtain a new imaginary number  𝑒
𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖)  ; whose real base is  𝑒2𝑘𝜋(𝑣1,𝑖 − 𝑣2,𝑖)  

We must also know that; the numbers  𝑒
𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) and  𝑒

𝜋

2
( 𝑣2,𝑖−𝑣1,𝑖 ) are opposite imaginaries. Because 

𝑒
𝜋

2
( 𝑣2,𝑖−𝑣1,𝑖 ) = 𝑒− 

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖)  

Likewise we will have the imaginaries  𝑒
𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) and 𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) of respective real bases 𝑒2𝑘𝜋(𝑣2,𝑖 − 𝑣3,𝑖) and  𝑒2𝑘𝜋(𝑣3,𝑖 − 𝑣1,𝑖).  

We obtain three more new secondary bases; thanks to this priority rule. 

 𝑠4,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖 − 𝑣2,𝑖) and  𝑠5,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) 

 𝑠5,𝑟 = 𝑒2𝑘𝜋(𝑣2,𝑖 − 𝑣3,𝑖) and  𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) 

 𝑠6,𝑟 = 𝑒2𝑘𝜋(𝑣3,𝑖 − 𝑣1,𝑖) and  𝑠4,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) 

What we can add is that; the rotation planes of these new bases are inclined in relation to the planes of the intermediate bases already 
proposed. A comparison would be necessary, with the planes of rotation of electrons around an atom, to have a precise idea of all the 
planes of rotation of hyper-complex bases. 

3.4.2 The complementary upper bases. 
If we have to multiply: 

𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 × (−𝑒

𝜋

2
𝑣3,𝑖) = 𝑒

𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 ×𝑒− 

𝜋

2
𝑣3,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖)  

We thus obtain a new imaginary number 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) whose real base is  𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖). 

Likewise we will have the imaginaries 𝑒
𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) and 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) of respective real bases 𝑒2𝑘𝜋(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) 

and 𝑒2𝑘𝜋(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ). 
We obtain three more new upper bases. 

 𝑢2,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖)  and    𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖)  

 𝑢3,𝑟 = 𝑒2𝑘𝜋(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖)  and   𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖)  

 𝑢4,𝑟 = 𝑒2𝑘𝜋(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 )  and   𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) 

So: 

The opposite of the imaginary number 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖)  is   𝑒

𝜋

2
(𝑣3,𝑖 −𝑣1,𝑖−𝑣2,𝑖 ) 

The opposite of the imaginary number 𝑒
𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖)  is  𝑒

𝜋

2
(𝑣1,𝑖−𝑣2,𝑖− 𝑣3,𝑖) 

The opposite of the imaginary number 𝑒
𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 )  is  𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖−𝑣1,𝑖) 

3.4.3 General expression of a “superimposed hyper-complex” number ℎ 
We can give a general algebraic formula for “superimposed hyper-complex” numbers; expressed with primary, intermediate and higher 
bases, in 6-dimensional hyperspace. This general formula is given by: 

ℎ = 𝑞𝑟 + 𝑞𝑖      where     :

{
 
 

 
 𝑞𝑟 =∑𝑥𝑛,𝑟𝑣𝑛,𝑟

3

𝑛=1

+∑𝑎𝑛,𝑟𝑠𝑛,𝑟 +∑𝑐𝑛,𝑟𝑢𝑛,𝑟

4

𝑛=1

6

𝑛=1

𝑞𝑖 =∑𝑦𝑛,𝑖𝑣𝑛,𝑖

3

𝑛=1

+∑𝑏𝑛,𝑖𝑠𝑛,𝑖

6

𝑛=1

+∑𝑑𝑛,𝑖𝑢𝑛,𝑖

4

𝑛=1

 

This general expression of ℎ; whose writing includes the primary, intermediate and higher bases; allows you to perform algebraic 
calculations with “hyper-complex superimposed” numbers in 6 dimensions without taking into account their geometric aspect. What 
is certain is that; for dimensions 𝑛 ≥ 4 even locating the orientation and direction of the imaginary bases requires; extensive 
knowledge of the properties of associated hyperspaces; such as the concept of hyper-angle. We can thus say; that the three (03) 
primary complex bases hide six (06) intermediate complex bases and four (04) upper complex bases in the set  𝕊(3;3). 

GSJ: Volume 12, Issue 8, August 2024 
ISSN 2320-9186 809

GSJ© 2024 
www.globalscientificjournal.com



 

 

3.5 Orbitals of set 𝕊(3; 3) 
We note that the set 𝕊(3;3) has: 

 Three (03) primary complex bases of module 𝜌1 = √1 = 1 : {𝑣1,𝑟  ;  𝑣2,𝑖} ; {𝑣2,𝑟  ; 𝑣3,𝑖} and {𝑣3,𝑟 ;  𝑣1,𝑖}. The orbitals with pri-

mary complex bases are circular with radius  𝑟 = 1. 

 Six (06) intermediate imaginary bases of module   𝜌2 = √2 and real module 𝜌𝑟 = 1: 

{𝑠1,𝑟  ;  𝑠2,𝑖} ; {𝑠2,𝑟  ;  𝑠3,𝑖} ; {𝑠3,𝑟  ;  𝑠1,𝑖} ; {𝑠4,𝑟  ;  𝑠5,𝑖} ;  {𝑠5,𝑟  ;  𝑠6,𝑖} and {𝑠6,𝑟 ;  𝑠1,𝑖}. All are linear combinations of primary bases 

two by two. The orbitals with intermediate complex bases are elliptical with semi-major axis 𝑎 = 𝜌2 = √2 and semi-minor 
axis  𝑏 = 1. 

 Four (04) upper imaginary bases of module 𝜌3 = √3 and real module  𝜌𝑟 = 1:  {𝑢1,𝑟  ;  𝑢2,𝑖} ; {𝑢2,𝑟 ;  𝑢3,𝑖} ; {𝑢3,𝑟  ;  𝑢4,𝑖} 

and  {𝑢4,𝑟 ;  𝑢1,𝑖}. All are linear combinations of the three (03) primary bases. The orbitals with intermediate complex bases 

are elliptical with semi-major axis 𝑎 = 𝜌3 = √3 and semi-minor axis 𝑏 = 1. 
We can say that the bases of the complex hyperspace 𝐸(3 ; 3) are distributed over thirteen (13) levels. If we consider these levels as 

orbitals, we have: 

 Three (03) circular orbitals of radius 𝜌1 = √1 = 1. 

 Six (06) elliptical orbitals of radius with semi-major axis 𝑎 = 𝜌2 = √2 and semi-minor axis 𝑏 = 1. 

 Four (04) elliptical orbital with semi-major axis 𝑎 = 𝜌3 = √3 and semi-minor axis 𝑏 = 1. 
Which gives an analogy with the structure of the possible orbitals of electrons, which orbit the nucleus of an atom. What is certain; is 
that if the hyperspace orbitals 𝐸(3 ; 3)  are not sufficient to explain the distribution of electrons around the nucleus; there exist higher 

spaces 𝐸(9 ; 9) ; 𝐸(27 ; 27) ; …….. ; 𝐸(𝑛 ; 𝑛) and 𝐸(3𝑛 ; 3𝑛) ; which we will define in the following parts. 

3.6 Applications “real product” ⨂r
e and “imaginary product” ⨂i

e to determine the product of hyper-complex 
bases. 

To simplify the calculations, let us define the applications, which we will call Euler products; the products noted: ⨂𝑒
𝑟  the real product 

and  ⨂𝑒
𝑖  the imaginary product. 

3.6.1 The imaginary product ⨂i
e rules 

Considering 𝑉𝑖 = 𝑒
𝜋

2
(𝛼1𝑣1,𝑖+𝛼2𝑣2,𝑖+𝛼3𝑣3,𝑖) and  𝑉𝑖

′ = 𝑒
𝜋

2
(𝛼1

′𝑣1,𝑖+𝛼2
′𝑣2,𝑖+𝛼3

′𝑣3,𝑖)   

The imaginary product ⨂𝑒
𝑖  of the two imaginary bases 𝑉𝑖  and  𝑉𝑖

′ is: 

⨂𝑒
𝑖 (𝑉𝑖 ;  𝑉𝑖

′) = 𝑒
𝜋

2
(𝛼1𝑣1,𝑖+𝛼2𝑣2,𝑖+𝛼2𝑣2,𝑖) ×𝑒

𝜋

2
(𝛼1

′𝑣1,𝑖+𝛼2
′𝑣2,𝑖+𝛼3

′𝑣3,𝑖) where 𝛼𝑘 ∈ {0 ;  1 }. 

We must then define the following applications, which we will associate with the imaginary product  ⨂𝑒
𝑖  : 

Considering the sets 𝐻 = { 0 + 4𝑝 ; 1 + 4𝑝 ; 2 + 4𝑝 ; 3 + 4𝑝}  (𝑝 ∈ ℤ);   𝐼 = {−1 ;  0 ; 1} and  𝐽 = {−1 ; +1} and the applications; 𝑓 

and  𝑆𝑛,± defined by: 

 𝑓(𝐻) = 𝐼 such as: 

{
 

 
𝑓(0 + 4𝑝) = 0   

𝑓(1 + 4𝑝) = 1   

𝑓(2 + 4𝑝) = 0   

𝑓(3 + 4𝑝) = −1

   

 𝑆𝑛,± = ({0 + 4𝑝 ; 2 + 4𝑝 }) =  𝐽 such that: 𝑆𝑛,± = {
𝑆0,±(0 + 4𝑝) = +1

𝑆2,±(2 + 4𝑝) = −1
  

Then the imaginary product application is defined by: 

⨂𝑒
𝑖 (𝑉𝑖 ;  𝑉𝑖

′) = 𝑒
𝜋

2
(𝛼1𝑣1,𝑖+𝛼2𝑣2,𝑖+𝛼2𝑣2,𝑖) ×𝑒

𝜋

2
(𝛼1

′𝑣1,𝑖+𝛼2
′𝑣2,𝑖+𝛼3

′𝑣3,𝑖)  

⨂𝑒
𝑖 (𝑉𝑖 ;  𝑉𝑖

′) = (𝑆0,± × 𝑆2,±) ×𝑒
𝜋
2[
𝑓(𝛼1+𝛼1

′)×𝑣1,𝑖+𝑓(𝛼2+𝛼2
′)×𝑣2,𝑖+𝑓(𝛼3+𝛼3

′)×𝑣3,𝑖] 
And we have: 

⨂𝑒
𝑖 (𝑉𝑖 ;  𝑉𝑖

′) = (𝑆0,± × 𝑆2,±) ×𝑒
𝜋
2
×[𝑓(1+4𝑝)∑ 𝑣𝑛,𝑖

3
𝑛=1 +𝑓(3+4𝑝)∑ 𝑣𝑚,𝑖

3
𝑚=1 ]

 
If we note ∏𝑖 = 𝑆0,± × 𝑆2,± we will have:  

⨂𝑒
𝑖 (𝑉𝑖 ;  𝑉𝑖

′) = ∏
𝑖
×𝑒

𝜋
2
×[𝑓(1+4𝑝)𝑣𝑛,𝑖+𝑓(3+4𝑝)𝑣𝑝,𝑖] 

3.6.2 Real Product Rules 
We geometrically deduce the corresponding real product by the rotation 𝑅

(O ; −
𝜋

2
)
 of the imaginary product and by the transfor-

mation 𝑇. 

We have: ⨂𝑒
𝑟(𝑉𝑟  ;  𝑉𝑟′) = 𝑒2𝑘𝜋(𝛼1𝑣1,𝑖+𝛼2𝑣2,𝑖+𝛼3𝑣3,𝑖) ×𝑒2𝑘𝜋(𝛼1

′𝑣1,𝑖+𝛼2
′𝑣2,𝑖+𝛼3

′𝑣3,𝑖) 
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⨂𝑒
𝑟(𝑉𝑟  ; 𝑉𝑟′) = 𝑇 ∘ 𝑅(O ; − 𝜋

2
)
(∏

𝑖
× [𝑒

𝜋

2
(𝛼1𝑣1,𝑖+𝛼2𝑣2,𝑖+𝛼3𝑣3,𝑖)] × 𝑇 ∘ 𝑅

(𝑂 ; − 
𝜋

2
)
[𝑒

𝜋

2
(𝛼1

′𝑣1,𝑖+𝛼2
′𝑣2,𝑖+𝛼3

′𝑣3,𝑖)])  

⨂𝑒
𝑟(𝑉𝑟  ;  𝑉𝑟′) = 𝑇 ∘ 𝑅(O ; − 𝜋

2
)
(∏

𝑖
× [𝑒

𝜋

2
(𝛼1𝑣1,𝑖+𝛼2𝑣2,𝑖+𝛼3𝑣3,𝑖) ×𝑒

𝜋

2
(𝛼1

′𝑣1,𝑖+𝛼2
′𝑣2,𝑖+𝛼3

′𝑣3,𝑖)])  

So we have now:   ⨂𝑒
𝑟(𝑉𝑟 ;  𝑉𝑟′) = 𝑇 ∘ 𝑅(O ; − 𝜋

2
)
[∏

𝑖
×⨂𝑒

𝑟(𝑉𝑖 ;  𝑉𝑖′)] 

With 𝑅
(O ; − 

𝜋

2
)
 the rotation with center 𝑂 and angle –

𝜋

2
   in the plane of rotation and 𝑇 the transformation defined by                  

𝑇(∑𝑣𝑛,𝑖) = ∑𝑣𝑛,𝑟. 

3.6.3 Examples: 
 Example1: 

Let us calculate 𝑠2,𝑖 × 𝑠3,𝑖 : 

We can put    𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) ×𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) 

                             𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 ×𝑒

𝜋

2
𝑣3,𝑖   

                             𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × (𝑒

𝜋

2
𝑣2,𝑖)

2

×𝑒
𝜋

2
𝑣3,𝑖  

                             𝑠2,𝑖 × 𝑠3,𝑖 = −𝑒
𝜋

2
(𝑣1,𝑖+𝑣3,𝑖)  

                             𝑠2,𝑖 × 𝑠3,𝑖 = −𝑠1,𝑖 
If we use the imaginary product, we have: 

       𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) ×𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) 

       𝑠2,𝑖 × 𝑠3,𝑖 = ⨂𝑒
𝑖 [𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) ×𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖)]  

       𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+𝑣3,𝑖) 

       𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒− 
𝜋

2
(𝑣1,𝑖+𝑣3,𝑖)  

       𝑠2,𝑖 × 𝑠3,𝑖 = −𝑠1,𝑖  
In both cases, we find the same result. 
It should be noted that; the purpose of the imaginary product is to bring out from the exponential, the real ones which are formed 
inside by cycle. Its interest is; to allow us to do calculations without taking into account the multiplication table. 

Noticed:  

If 𝑓(2 + 4𝑝) appears twice (or more) give priority to the corresponding intermediate imaginary base (or upper base).  
For example if we have: 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋
2(
𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) ×𝑒

𝜋
2(
𝑣1,𝑖+𝑣2,𝑖) 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋
2(
2𝑣1,𝑖+2𝑣2,𝑖+𝑣3,𝑖) 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋
2[
2(𝑣1,𝑖+𝑣2,𝑖)+𝑣3,𝑖] 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋
2[
2(𝑣1,𝑖+𝑣2,𝑖)+𝑣3,𝑖] 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋
2[
2𝑠2,𝑖+𝑣3,𝑖] 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒− 
𝜋
2
𝑣3,𝑖 

𝑢2,𝑖 × 𝑠2,𝑖 = −𝑣3,𝑖  
We must notice that: if we give priority to the intermediate and upper imaginary bases, we lose the associativity of the imaginary 
product.  However, as I specified in the paragraph (4.2.10 p21), if we define a multiplication sign rules linked to complex superposition, 
the property of associativity will be preserved. 

 Example 2: 

Let us calculate 𝑠3,𝑟 × 𝑠2,𝑟 

                  𝑠3,𝑟 × 𝑠2,𝑟 = ⨂𝑒
𝑟(𝑒2𝑘𝜋(𝑣3,𝑖+𝑣1,𝑖) ;  𝑒2𝑘𝜋(𝑣2,𝑖+𝑣3,𝑖)) 

                  𝑠3,𝑟 × 𝑠2,𝑟 = 𝑇 ∘ 𝑅(𝑂 ; − 𝜋
2
)
[∏

𝑖
×⨂𝑒

𝑖 (𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) ;  𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖))]  

                  𝑠3,𝑟 × 𝑠2,𝑟 = 𝑇 ∘ 𝑅(𝑂 ; − 𝜋
2
)
[∏

𝑖
×𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+2𝑣3,𝑖)]   
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                  𝑠3,𝑟 × 𝑠2,𝑟 = 𝑇 ∘ 𝑅(𝑂 ; − 𝜋
2
)
[(−) × (−)𝑒 

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖)] 

                   𝑠3,𝑟 × 𝑠2,𝑟 = 𝑇 ∘ 𝑅(𝑂 ; − 𝜋
2
)
[𝑒 

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖)] 

                   𝑠3,𝑟 × 𝑠2,𝑟 = 𝑒 2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖) 
                   𝑠3,𝑟 × 𝑠2,𝑟 = 𝑠1,𝑟 
We must take into account, that all the primary, intermediate and upper real bases have the same module. All their module are equal 
to 1. Which means that the purpose of the real product is not only to make a calculation but to determine their geometric orientations.  

3.7 Hyper-plane 𝑷(3; 3) associated with the hyper-space 𝑬(3; 3) of dimension 6. 
We know that a hyper-complex number of dimension 6 is written in the form: 

ℎ = (𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟) + (𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖)  

If 𝑞𝑟 = 𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟 and 𝑞𝑖 = 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖 

Then ℎ = 𝑞𝑟 + 𝑞𝑖 where  𝑞𝑟   is a real number of dimension 3 and  𝑞𝑖 an imaginary number of dimension 3. We have the equality: 

𝑢1,𝑟 = 𝑣1,𝑟 × 𝑣2,𝑟 × 𝑣3,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑣1,𝑟 + 𝑣2,𝑟 − 𝑣3,𝑟 (with 𝑘 = 0). 

The number 𝑢1,𝑟  designates the real base of module 𝜌 = √3. 

So: 𝑞𝑟 = 𝑞𝑟 × 𝑢1,𝑟
−1 × 𝑢1,𝑟 

            𝑞𝑟 = (𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟) × 𝑢1,𝑟
−1 × 𝑢1,𝑟 

            𝑞𝑟 = (𝑥1,𝑟𝑣1,𝑟 × 𝑢1,𝑟
−1 + 𝑥2,𝑟𝑣2,𝑟 × 𝑢1,𝑟

−1 + 𝑥3,𝑟𝑣3,𝑟 × 𝑢1,𝑟
−1) × 𝑢1,𝑟 

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑒2𝑘𝜋𝑣2,𝑖 ×𝑒−2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)  

𝑣1,𝑟 × 𝑢1,𝑟
−1 = ⨂𝑒

𝑟 (𝑒2𝑘𝜋𝑣2,𝑖  ;  𝑒−2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

We must know that: 𝑒−2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) 
𝑣1,𝑟 × 𝑢1,𝑟

−1 = ⨂𝑒
𝑟 (𝑒2𝑘𝜋𝑣2,𝑖  ;  𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑇 ∘ 𝑅

(O ; − 
𝜋

2
)
[∏

𝑖
×⨂𝑒

𝑖 (𝑒
𝜋

2
𝑣2,𝑖  ;  𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))]  

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑇 ∘ 𝑅

(O ; − 
𝜋

2
)
[∏

𝑖
×𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+𝑣3,𝑖)]  

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑇 ∘ 𝑅

(O  ; − 
𝜋
2)
[(−) × (−)𝑒

𝜋
2(
𝑣1,𝑖+𝑣3,𝑖)] 

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑇 ∘ 𝑅

(O ; − 
𝜋

2
)
[𝑒

𝜋

2
(𝑣1,𝑖+𝑣3,𝑖)]  

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣3,𝑖)  

𝑣1,𝑟 × 𝑢1,𝑟
−1 = 𝑠3,𝑟  

In the same way, we obtain: 

𝑣2,𝑟 × 𝑢1,𝑟
−1 = ⨂𝑒

𝑟 (𝑒2𝑘𝜋𝑣3,𝑖 ×𝑒−2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

𝑣2,𝑟 × 𝑢1,𝑟
−1 = ⨂𝑒

𝑟 (𝑒2𝑘𝜋𝑣3,𝑖 ×𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

𝑣2,𝑟 × 𝑢1,𝑟
−1 = 𝑇 ∘ 𝑅

(O ; − 
𝜋

2
)
[∏

𝑖
×⨂𝑒

𝑖 (𝑒
𝜋

2
𝑣3,𝑖 ×𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))]  

𝑣2,𝑟 × 𝑢1,𝑟
−1 = 𝑠1,𝑟  

𝑣3,𝑟 × 𝑢1,𝑟
−1 = ⨂𝑒

𝑟 (𝑒2𝑘𝜋𝑣1,𝑖 ×𝑒−2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

𝑣3,𝑟 × 𝑢1,𝑟
−1 = ⨂𝑒

𝑟 (𝑒2𝑘𝜋𝑣1,𝑖 ×𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

𝑣3,𝑟 × 𝑢1,𝑟
−1 = 𝑇 ∘ 𝑅

(O ; − 
𝜋

2
)
[∏

𝑖
×⨂𝑒

𝑖 (𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))]  

𝑣3,𝑟 × 𝑢1,𝑟
−1 = 𝑠2,𝑟  

Whence  𝑞𝑟 = (𝑥1,𝑟𝑠3,𝑟 + 𝑥2,𝑟𝑠1,𝑟 + 𝑥3,𝑟𝑠2,𝑟) × 𝑢1,𝑟 

𝑞𝑟 = (𝑥2,𝑟𝑠1,𝑟 + 𝑥3,𝑟𝑠2,𝑟 + 𝑥1,𝑟𝑠3,𝑟) × 𝑢1,𝑟  

We can clearly see that  𝑥2,𝑟𝑠1,𝑟 + 𝑥3,𝑟𝑠2,𝑟 + 𝑥1,𝑟𝑠3,𝑟  is a linear combination with real coefficients and real bases. 

If we designate by the number   𝑎1,𝑟  this linear combination with real coefficients and real bases of dimension 3 such that:                  
𝑎1,𝑟 = 𝑥2,𝑟𝑠1,𝑟 + 𝑥3,𝑟𝑠2,𝑟 + 𝑥1,𝑟𝑠3,𝑟 
So 𝑞𝑟 = 𝑎1,𝑟𝑢1,𝑟 

Likewise, we have the equality: 
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𝑢2,𝑖  = 𝑣1,𝑖 × 𝑣2,𝑖 × 𝑣3,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 ×𝑒

𝜋

2
𝑣3,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖)  

The number 𝑢2,𝑖 designates imaginary base of module 𝜌 = √3. 

So: 𝑞𝑖 = 𝑞𝑖 × 𝑢2,𝑖
−1 × 𝑢2,𝑖  

            𝑞𝑖 = (𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖) × 𝑢2,𝑖
−1 × 𝑢2,𝑖  

             𝑞𝑖 = (𝑦1,𝑖𝑣1,𝑖 × 𝑢2,𝑖
−1 + 𝑦2,𝑖𝑣2,𝑖 × 𝑢2,𝑖

−1 + 𝑦3,𝑖𝑣3,𝑖 × 𝑢2,𝑖
−1) × 𝑢2,𝑖  

𝑣1,𝑖 × 𝑢2,𝑖
−1 = 𝑒

𝜋

2
𝑣1,𝑖 ×𝑒− 

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒− 

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = −𝑠3,𝑖  

If we use the imaginary product; we obtain: 

𝑣1,𝑖 × 𝑢2,𝑖
−1 = ⨂𝑒

𝑖 (𝑒
𝜋

2
𝑣1,𝑖 ×𝑒− 

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖))  

𝑣1,𝑖 × 𝑢2,𝑖
−1 = 𝑒

𝜋

2
(0𝑣1,𝑖−𝑣2,𝑖−𝑣3,𝑖)  

𝑣1,𝑖 × 𝑢2,𝑖
−1 = 𝑒

𝜋

2
(−𝑣2,𝑖−𝑣3,𝑖)  

𝑣1,𝑖 × 𝑢2,𝑖
−1 = −𝑠3,𝑖  

In the same way, we obtain: 

𝑣2,𝑖 × 𝑢2,𝑖
−1 = 𝑒

𝜋

2
𝑣2,𝑖 ×𝑒− 

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(−𝑣1,𝑖−𝑣3,𝑖) = −𝑠1,𝑖  

𝑣3,𝑖 × 𝑢2,𝑖
−1 = 𝑒

𝜋

2
𝑣3,𝑖 ×𝑒− 

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(−𝑣1,𝑖−𝑣2,𝑖) = −𝑠2,𝑖  

Whence: 𝑞𝑖 = (−𝑦1,𝑖𝑠3,𝑖 − 𝑦2,𝑖𝑠1,𝑖 − 𝑦3,𝑖𝑠2,𝑖) × 𝑢2,𝑖 

            𝑞𝑖 = (−𝑦2,𝑖𝑠1,𝑖 − 𝑦3,𝑖𝑠2,𝑖 − 𝑦1,𝑖𝑠3,𝑖) × 𝑢2,𝑖 

We can clearly see that   −𝑦2,𝑖𝑠1,𝑖 − 𝑦3,𝑖𝑠2,𝑖 − 𝑦1,𝑖𝑠3,𝑖    is a linear combination with real coefficients and imaginary bases. 

If we designate by the number   𝑏2,𝑖 this linear combination with real coefficients and imaginary bases of dimension 3 such that:     
𝑏2,𝑖  = −𝑦2,𝑖𝑠1,𝑖 − 𝑦3,𝑖𝑠2,𝑖 − 𝑦1,𝑖𝑠3,𝑖 
So 𝑞𝑖 = 𝑏2,𝑖𝑢2,𝑖 

Therefore: ℎ = 𝑎1,𝑟𝑢1,𝑟 + 𝑏2,𝑖𝑢2,𝑖 
All this shows that the hyper-complex numbers ℎ of the set 𝕊(3;3) can be written in a plane complex form: 

ℎ = 𝑎1,𝑟𝑢1,𝑟 + 𝑏2,𝑖𝑢2,𝑖 ; 
𝑎1,𝑟   a linear combination with real coefficients and real bases of dimension 3. 

𝑏2,𝑖  a linear combination with real coefficients and imaginary bases of dimension 3. 
Thus we obtain the hyper-plane 𝑃(3;3) associated with the hyper-space 𝐸(3;3).  

So we can associate the hyper-complex number writing ℎ = 𝑎1,𝑟𝑢1,𝑟 + 𝑏2,𝑖𝑢2,𝑖 of dimension 6 the following multiplication table: 

× 𝑢1,𝑟 𝑢2,𝑖 

𝑢1,𝑟 𝑢1,𝑟 𝑢2,𝑖 

𝑢2,𝑖 𝑢2,𝑖 −𝑢1,𝑟 

Table 5: Multiplication table of upper base {𝑢1,𝑟  ;  𝑢2,𝑖} 

Thus, the rules of multiplication in 𝕊(3;3) are the same as those in  𝕊(1;1). Consequently the operation × of the multiplication associated 

with the Euler products ⨂𝑒
𝑟   and  ⨂𝑒

𝑖  in the set 𝕊(3;3)  is a commutative, associative and bilinear operation and admits as element 

neutral   𝑢1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) . 
We can conclude that 𝕊(3;3) equipped with the internal operations + and × is an associative, commutative, unitary and bilinear algebra 

on the hyper-complex number set 𝕊(3;3). 

For a hyper-complex number ℎ = 𝑎1,𝑟𝑢1,𝑟 + 𝑏2,𝑖𝑢2,𝑖 of dimension 3; its corresponding direct similarity matrix is written as follows: 

ℳ2(ℎ) = (
𝑎1,𝑟 −𝑏2,𝑖
𝑏2,𝑖 𝑎1,𝑟

) 

3.8 Subsets of 𝕊(3; 3) 
The set 𝕊(3;3) is a superimposed set with 3 real and imaginary dimensions. The subsets of 𝕊(3;3) are superimposed sets with real and 

imaginary dimensions less than or equal to 3. Thus we distinguish the subsets: 
Of type 𝕊(𝑚;𝑝) with 𝑚 ≤ 3 and 𝑝 ≤ 3. There are  24 − 1 subsets for these types. 

Of type 𝕊(3;3)∖(𝑚;𝑝) the subsets of 𝕊(3;3) deprived of the bases of  𝕊(𝑚;𝑝). There are 24 − 2 subsets for these types. 

To this must be added the subsets of 𝕊(3;3) deprived of some real or imaginary bases  
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3.9 Study of the case where the primary real bases are superimposed on the same axis 
We know that, all real bases (primary, intermediate and upper) have the same module 𝜌𝑟 = 1. Therefore, we can study the case where 
the primary real bases are superimposed; by asking:  

𝑣1,𝑟  = 𝑣2,𝑟 = 𝑣3,𝑟 = 𝑣𝑟 
We will then have for any “superimposed hyper-complex”:  
ℎ = 𝑥1,𝑟𝑣1,𝑟 + 𝑥2,𝑟𝑣2,𝑟 + 𝑥3,𝑟𝑣3,𝑟 + 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖  
ℎ = 𝑥1,𝑟𝑣𝑟 + 𝑥2,𝑟𝑣𝑟 + 𝑥3,𝑟𝑣𝑟 + 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖 

ℎ = (𝑥1,𝑟 + 𝑥2,𝑟 + 𝑥3,𝑟)𝑣𝑟 + 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖 

If we pose that:  𝑥1,𝑟 + 𝑥2,𝑟 + 𝑥3,𝑟 = 𝑥𝑟 

We obtain the equality ℎ = 𝑥𝑟𝑣𝑟 + 𝑦1,𝑖𝑣1,𝑖 + 𝑦2,𝑖𝑣2,𝑖 + 𝑦3,𝑖𝑣3,𝑖 
This expression of the “superimposed hyper-complex” h is given with the primary complex bases. Geometrically, we can say that; 𝑣𝑟 is 
the real base carried by the unique hyper-axis defined as, the unique axis perpendicular to the imaginary hyper-space                         

𝐸(0;3) = {(𝑣1,𝑖 ;  𝑣2,𝑖 ;  𝑣3,𝑖)}. Which corresponds to the subset  𝕊(1;3). 

However, we know that the three real bases hide intermediate and upper bases. So we can associate; any “superimposed hyper-
complex” ℎ in the subset 𝕊(1;3) ; for its general expression the following multiplication table:  

× 𝑣𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠2,𝑖 𝑠3,𝑖 𝑠4,𝑖 𝑠5,𝑖 𝑠6,𝑖 𝑢1,𝑖 𝑢2,𝑖 𝑢3,𝑖 𝑢4,𝑖 

𝑣𝑟 𝑣𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠2,𝑖 𝑠3,𝑖 𝑠4,𝑖 𝑠5,𝑖 𝑠6,𝑖 𝑢1,𝑖 𝑢2,𝑖 𝑢3,𝑖 𝑢4,𝑖 

𝑣1,𝑖 𝑣1,𝑖 -𝑣𝑟 𝑠2,𝑖 𝑠1,𝑖 -𝑣3,𝑖 -𝑣2,𝑖 𝑢2,𝑖 𝑣3,𝑖 𝑣2,𝑖 𝑢3,𝑖 𝑠6,𝑖 -𝑠3,𝑖 -𝑠6,𝑖 𝑠3,𝑖 

𝑣2,𝑖 𝑣2,𝑖 𝑠2,𝑖 -𝑣𝑟 𝑠3,𝑖 𝑢2,𝑖 -𝑣1,𝑖 -𝑣3,𝑖 𝑢4,𝑖 𝑣1,𝑖 𝑣3,𝑖 𝑠1,𝑖 -𝑠1,𝑖 𝑠4,𝑖 -𝑠4,𝑖 

𝑣3,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠3,𝑖 -𝑣𝑟 -𝑣1,𝑖 𝑢2,𝑖 -𝑣2,𝑖 𝑣1,𝑖 𝑢1,𝑖 𝑣2,𝑖 -𝑠5,𝑖 -𝑠2,𝑖 𝑠2,𝑖 𝑠5,𝑖 

𝑠1,𝑖 𝑠1,𝑖 -𝑣3,𝑖 𝑢2,𝑖 -𝑣1,𝑖 -𝑣𝑟 -𝑠3,𝑖 -𝑠2,𝑖 -𝑣𝑟 𝑠6,𝑖 𝑠2,𝑖 𝑣2,𝑖 -𝑣2,𝑖 -𝑣2,𝑖 -𝑣2,𝑖 

𝑠2,𝑖 𝑠2,𝑖 -𝑣2,𝑖 -𝑣1,𝑖 𝑢2,𝑖 -𝑠3,𝑖 -𝑣𝑟 -𝑠1,𝑟 𝑠3,𝑖 -𝑣𝑟 𝑠4,𝑖 -𝑣3,𝑖 -𝑣3,𝑖 𝑣3,𝑖 -𝑣3,𝑖 

𝑠3,𝑖 𝑠3,𝑖 𝑢2,𝑖 -𝑣3,𝑖 -𝑣2,𝑖 -𝑠2,𝑖 -𝑠1,𝑟 -𝑣𝑟 𝑠5,𝑖 𝑠1,𝑖 -𝑣𝑟 -𝑣1,𝑖 -𝑣1,𝑖 -𝑣1,𝑖 𝑣1,𝑖 

𝑠4,𝑖 𝑠4,𝑖 𝑣3,𝑖 𝑢4,𝑖 𝑣1,𝑖 -𝑣𝑟 𝑠3,𝑖 𝑠5,𝑖 -𝑣𝑟 -𝑠6,𝑖 -𝑠5,𝑖 𝑣2,𝑖 -𝑣2,𝑖 𝑣2,𝑖 -𝑣2,𝑖 

𝑠5,𝑖 𝑠5,𝑖 𝑣2,𝑖 𝑣1,𝑖 𝑢1,𝑖 𝑠6,𝑖 -𝑣𝑟 𝑠1,𝑖 -𝑠6,𝑖 -𝑣𝑟 -𝑠4,𝑖 -𝑣3,𝑖 -𝑣3,𝑖 𝑣3,𝑖 𝑣3,𝑖 

𝑠6,𝑖 𝑠6,𝑖 𝑢3,𝑖 𝑣3,𝑖 𝑣2,𝑖 𝑠2,𝑖 𝑠4,𝑖 -𝑣𝑟 -𝑠5,𝑖 -𝑠4,𝑖 -𝑣𝑟 𝑣1,𝑖 -𝑣1,𝑖 -𝑣1,𝑖 𝑣1,𝑖 

𝑢1,𝑖 𝑢1,𝑖 𝑠6,𝑖 𝑠1,𝑖 -𝑠5,𝑖 𝑣2,𝑖 -𝑣3,𝑖 -𝑣1,𝑖 𝑣2,𝑖 -𝑣3,𝑖 𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

𝑢2,𝑖 𝑢2,𝑖 -𝑠3,𝑖 -𝑠1,𝑖 -𝑠2,𝑖 -𝑣2,𝑖 -𝑣3,𝑖 -𝑣1,𝑖 -𝑣2,𝑖 -𝑣3,𝑖 -𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

𝑢3,𝑖 𝑢3,𝑖 -𝑠6,𝑖 𝑠4,𝑖 𝑠2,𝑖 -𝑣2,𝑖 𝑣3,𝑖 -𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 -𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

𝑢4,𝑖 𝑢4,𝑖 𝑠3,𝑖 -𝑠4,𝑖 𝑠5,𝑖 -𝑣2,𝑖 -𝑣3,𝑖 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

Table 6: multiplication table of subset 𝕊(1;3) when 𝑣1,𝑟  = 𝑣2,𝑟 = 𝑣3,𝑟 = 𝑣𝑟 

The data used to establish table 6 are listed in the appendices on page 25. 

3.10 Extension of set ℂ by superposition of two complex planes 
Let us consider the complex planes (𝑂 ; 𝑣𝑟  ;  𝑣𝑖) and (𝑂 ; 𝑣𝑟  ;  𝑣𝑗) defined by: 

 Such that any number 𝑠1 ∈ ℂ ; affix of a point 𝑀1 of the complex plane (𝑂 ; 𝑣𝑟  ;  𝑣𝑖); we have:  𝑠1 = 𝑎 + 𝑦𝑖 (with 𝑎 ∈ ℝ ;         
𝑦 ∈ ℝ and 𝑖 an imaginary number such that: 𝑖2 = −1).  

We associate with this plan the complex base  {1; 𝑖} ; where  𝑖 = 𝑒 
𝜋
2
 𝑖

. 

 Such that any number 𝑠2 ∈ ℂ ; affix of a point 𝑀2 of the complex plane (𝑂 ; 𝑣𝑟  ;  𝑣𝑗); we have :  𝑠2 = 𝑏 + 𝑧𝑗 (with 𝑏 ∈ ℝ ;       

𝑧 ∈ ℝ and 𝑗 an imaginary number such that: 𝑗2 = −1) 

We associate with this plan the complex base {1; 𝑗}; where 𝑗 = 𝑒 
𝜋
2
 𝑗

. 
If we superimpose the complex planes (𝑂 ; 𝑣𝑟  ;  𝑣𝑖) and (𝑂 ; 𝑣𝑟  ;  𝑣𝑗) orthogonally; we obtain the superimposed complex space 

(𝑂 ; 𝑣𝑟  ;  𝑣𝑖 ;  𝑣𝑗). Thus there exists a superimposed hyper-complex number 𝑠 such that: 𝑠 = 𝑠1 + 𝑠2 

We then have:  𝑠 = 𝑎 + 𝑦𝑖 + 𝑏 + 𝑧𝑗  
                             𝑠 = 𝑎 + 𝑏 + 𝑦𝑖 + 𝑧𝑗  ; if we put 𝑥 = 𝑎 + 𝑏 we will have. 
                             𝑠 = 𝑥 + 𝑦𝑖 + 𝑧𝑗  
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We can therefore define the three-dimensional set ℂ(1;2) as an extension of set ℂ by orthogonal superposition of two complex planes. 

In this configuration the real axis (𝑂 ; 𝑣𝑟) is perpendicular to the imaginary plane (𝑂 ; 𝑣𝑖 ;  𝑣𝑗). 

To the set ℂ(1;2) ; we can associate the following multiplication table.  

× 1 𝑒 
𝜋
2
 𝑖

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 𝑒 
𝜋
2
(𝑖 − 𝑗)

 

1 1 𝑒 
𝜋
2
 𝑖

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 𝑒 
𝜋
2
(𝑖 − 𝑗)

 

𝑒 
𝜋
2
 𝑖

 𝑒 
𝜋
2
 𝑖

 -1 𝑒 
𝜋
2
(𝑖 + 𝑗)

 -𝑒 
𝜋

2
 𝑗

 𝑒 
𝜋
2
 𝑗

 

𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 -1 -𝑒 
𝜋

2
 𝑖

 𝑒 
𝜋
2
 𝑖

 

𝑒 
𝜋
2
(𝑖 + 𝑗)

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 -𝑒 
𝜋

2
 𝑗

 -𝑒 
𝜋

2
 𝑖

 -1 -1 

𝑒 
𝜋
2
(𝑖 − 𝑗)

 𝑒 
𝜋
2
(𝑖 − 𝑗)

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
 𝑖

 -1 -1 

Table 7: multiplication table of ℂ(1;2) 

The data used to establish table 7 are listed in the appendices on page 28. 

Note:  𝑒 
𝜋
2
(𝑗−𝑖)

= −𝑒 
𝜋
2
(𝑖−𝑗)

; so no need to put 𝑒 
𝜋
2
(𝑗−𝑖)

 in the table. 

4 SETS  𝕊(𝟗;𝟗) ; …….. ; 𝕊(𝒏;𝒏) ; 𝕊(𝟑𝒏;𝟑𝒏) 

4.1 Algebraic space 𝕊(9; 9) 

4.1.1 Construction by orthogonal superposition. 
Intuitively, it is difficult to visualize the addition of the 4th dimension and subsequent dimensions. However, we can obtain the algebraic 
space 𝕊(9;9) by an orthogonal superposition of three hyper-planes of dimension 3: 𝑃(3;3) ; 𝑃′(3;3) and 𝑃′′(3;3). 

𝑃(3;3) : Hyper-complex plan associated with real bases {𝑣1,𝑟 ; 𝑣2,𝑟  ; 𝑣3,𝑟} and imaginary bases {𝑣1,𝑖 ;  𝑣2,𝑖 ;  𝑣3,𝑖}; of upper 

base  {𝑢1,𝑟 ; 𝑢2,𝑖}. 

𝑃′(3;3) : Hyper-complex plane associated with real bases {𝑣4,𝑟 ; 𝑣5,𝑟 ; 𝑣6,𝑟} and imaginary bases {𝑣4,𝑖 ;  𝑣5,𝑖 ;  𝑣6,𝑖}; upper ba-

sis {𝑢2,𝑟 ; 𝑢3,𝑖}. 

𝑃′′(3;3) : Hyper-complex plane associated with real bases {𝑣7,𝑟 ; 𝑣8,𝑟 ; 𝑣9,𝑟} and imaginary bases {𝑣7,𝑖 ;  𝑣8,𝑖 ;  𝑣9,𝑖}; upper base 

{𝑢3,𝑟 ; 𝑢1,𝑖} 

The orthogonal superposition of the hyper-planes 𝑃(3;3) ; 𝑃′(3;3) and 𝑃′′(3;3) in their rotation orders                                                                

𝑃(3;3) 
           
→   𝑃′(3;3) 

           
→    𝑃′′(3;3) 

           
→   𝑃(3;3) ; gives us a geometric hyper-space: 

 𝐸(9;9) = 𝑃(3;3) ⊥ 𝑃′(3;3) ⊥  𝑃′′(3;3). 

Considering   ℎ1 = 𝑎1,𝑟𝑢1,𝑟 + 𝑏2,𝑖𝑢2,𝑖 the affix of a hyper-point of the plane 𝑃(3;3) 

          𝑎1,𝑟    a linear combination with real coefficients and real bases 
          𝑏2,𝑖   a linear combination with real coefficients and imaginary bases 

          𝑢1,𝑟 = 𝑒2𝑘𝜋(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) and   𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) 

If  ℎ2 = 𝑎2,𝑟𝑢2,𝑟 + 𝑏3,𝑖𝑢3,𝑖 is the affix of a hyper-point of the plane 𝑃′(3;3) 

          𝑎2,𝑟  a linear combination with real coefficients and real bases 
          𝑏3,𝑖  a linear combination with real coefficients and imaginary bases 

          𝑢2,𝑟 = 𝑒2𝑘𝜋(𝑣4,𝑖+ 𝑣5,𝑖+ 𝑣6,𝑖)     and   𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣4,𝑖+ 𝑣5,𝑖+ 𝑣6,𝑖) 

If    ℎ3 = 𝑎3,𝑟𝑢3,𝑟 + 𝑏1,𝑖𝑢1,𝑖  is the affix of a hyper-point of the plane 𝑃′′(3;3) 

          𝑎3,𝑟  a linear combination with real coefficients and real bases 
          𝑏1,𝑖   a linear combination with real coefficients and imaginary bases 

          𝑢2,𝑟 = 𝑒2𝑘𝜋(𝑣7,𝑖+ 𝑣8,𝑖+𝑣9,𝑖)  and   𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣7,𝑖+ 𝑣8,𝑖+𝑣9,𝑖) 

Then at any point 𝑀  in the space, 𝐸(9;9) we can associate a number ℎ = ℎ1 + ℎ2 + ℎ3 

We therefore have: ℎ = (𝑎1,𝑟𝑢1,𝑟 + 𝑏2,𝑖𝑢2,𝑖) + (𝑎2,𝑟𝑢2,𝑟 + 𝑏3,𝑖𝑢3,𝑖) + (𝑎3,𝑟𝑢3,𝑟 + 𝑏1,𝑖𝑢1,𝑖) 
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                                    ℎ = 𝑎1,𝑟𝑢1,𝑟 + 𝑎2,𝑟𝑢2,𝑟 + 𝑎3,𝑟𝑢3,𝑟 + 𝑏1,𝑖𝑢1,𝑖 + 𝑏2,𝑖𝑢2,𝑖 + 𝑏3,𝑖𝑢3,𝑖 
The hyper-complex writing of the number h of dimension 18 includes two parts: 
A real part 𝑞𝑟 = 𝑎1,𝑟𝑢1,𝑟 + 𝑎2,𝑟𝑢2,𝑟 + 𝑎3,𝑟𝑢3,𝑟 
An imaginary part 𝑞𝑖 = 𝑏1,𝑖𝑢1,𝑖 + 𝑏2,𝑖𝑢2,𝑖 + 𝑏3,𝑖𝑢3,𝑖 
𝐸(9;9)  is therefore the superposition of a hyper-space with 9 real dimensions and a hyper-space with 9 imaginary dimensions:  

𝔅9,𝑟 = {𝑣1,𝑟 ; 𝑣2,𝑟  ; …………………… .… ; 𝑣9,𝑟} and 𝔅9,𝑖 = {𝑣1,𝑖 ;  𝑣2,𝑖 ; …………………… … ; 𝑣9,𝑖} 

We note: 𝐸(9;9) = {(𝑣1,𝑟 ; 𝑣2,𝑟  ; ………… ; 𝑣9,𝑟) ; (𝑣1,𝑖 ;  𝑣2,𝑖 ; ………… ; 𝑣9,𝑖)} 

Thus the upper base of the set 𝕊(9;9) is: {𝑒
2𝑘𝜋[∑ (𝑣𝑝,𝑖 )

9
𝑝=1 ]

 

𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
9
𝑝=1 ]   

   
 with 𝑘 = 0   

4.1.2 Hyper-plane 𝑷(9; 9) 

The geometric and orthogonal superposition of the planes 𝑃(3;3) ; 𝑃′(3;3) and 𝑃′′(3;3) gave us the hyperspace 𝐸(9;9) associated with the 

set 𝕊(9;9) has 9 real dimensions and 9 imaginary dimensions. 

If we note 𝑉𝜌
√9

1,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑟 )
9
𝑝=1 ]

 and   𝑉𝜌
√9

2,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
9
𝑝=1 ]

 the upper bases of the set  𝕊(9;9) and of module 𝜌9 = √9 = 3; then 

for any number ℎ ∈ 𝕊(9;9), there exist two numbers  𝑋1,𝑟 and 𝑌2,𝑖  such that: 

𝑞𝑟 = 𝑎1,𝑟𝑢1,𝑟 + 𝑎2,𝑟𝑢2,𝑟 + 𝑎3,𝑟𝑢3,𝑟 = 𝑋1,𝑟 𝑉𝜌
√9

1,𝑟  

𝑞𝑖 = 𝑏1,𝑖𝑢1,𝑖 + 𝑏2,𝑖𝑢2,𝑖 + 𝑏3,𝑖𝑢3,𝑖 = 𝑌2,𝑖 𝑉𝜌
√9

2,𝑖  

So we have: ℎ = 𝑋1,𝑟 𝑉𝜌
√9

1,𝑟 + 𝑌2,𝑖 𝑉𝜌
√9

2,𝑖 

𝑋1,𝑟 a linear combination with real coefficients and real bases of dimension 9 and module 1 . If we denote  𝑆𝜌
√6

𝑝,𝑟   the intermediate 

real bases of module 1 then: 𝑋1,𝑟 = ∑ (𝑎𝑝,𝑟
3
𝑝=1 𝑆𝜌

√6
𝑝,𝑟) with 𝑝 ∈ {1 ; 2 ; 3}  and 𝑎𝑝,𝑟 the real coefficients of  ℎ. 

𝑌2,𝑖 a linear combination with real coefficients and imaginary bases of dimension 9 and module  𝜌6 = √6  . If we note 𝑆𝜌
√6

𝑛,𝑖  the inter-

mediate imaginary bases of module 𝜌6 = √6   then:  𝑌2,𝑖 = ∑ 𝑏𝑝,𝑖
3
𝑝=1 𝑆𝜌

√6
𝑝,𝑖  with 𝑝 ∈ {1 ; 2 ; 3} and 𝑏𝑝,𝑖  the imaginary coefficients of  ℎ. 

Thus we obtain a complex hyper-plane 𝑃(9;9)  with 9 dimensions of bases greater than  { 𝑉𝜌
√9

1,𝑟 ;  𝑉𝜌
√9

2,𝑖 }. 

We can also write the numbers 𝑋1,𝑟 and 𝑌2,𝑖 as a linear combination respectively of the 9 intermediate real bases of module 1  and the 
9 intermediate imaginary bases of module 1. 

Thus 𝑋1,𝑟 = ∑ (𝑎𝑝,𝑟
9
𝑝=1 𝑆𝜌

√8
𝑝,𝑟)  with 𝑎𝑝,𝑟  the coefficients of the initial real bases and 𝑆𝜌

√8
𝑝,𝑟 the intermediate bases of module 1. 

And 𝑌2,𝑖 = ∑ (𝑏𝑝,𝑖
9
𝑝=1 𝑆𝜌

√8
𝑝,𝑖)  with 𝑏𝑝,𝑖 the coefficients of the initial imaginary bases and 𝑆𝜌

√8
𝑝,𝑖 the intermediate bases of imaginary 

module 𝜌8 = √8. 

4.1.3 Subsets of 𝕊(9;9) 
In addition to the set 𝕊(3;3) and its subsets we distinguish the subsets  𝕊(𝑚;𝑙) with 3 ≤ 𝑚 ≤ 9 and    3 ≤ 𝑙 ≤ 9 such that: if 𝑚 = 9  then 

𝑙 < 9 and if 𝑙 = 9  then 𝑚 < 9. 
The upper bases of the subsets  𝕊(𝑚;𝑙) are respectively: 

𝑉𝜌
√𝑚

1,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑟 )
𝑚
𝑝=1 ]

 : real base 

𝑉𝜌
√𝑙

2,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
𝑙
𝑝=1 ]

 : Imaginary base 

Thus the set 𝕊(9;9)  inherits the algebraic properties of the set 𝕊(3;3). This construction carried out by geometric superposition gives 

the set  𝕊(9;9) an algebraic structure of dimension 18. Consequently  𝕊(9;9) is a ℂ -algebra. 

4.2 Algebraic space 𝕊(3n;3n) 

4.2.1 Complete ℂ -algebra 
Considering 𝕊(𝑛;𝑛) and   𝕊(𝑝;𝑝) two ℂ-algebra of dimensions 𝑛 and 𝑝. We can say that: 

𝕊(𝑛;𝑛)  is a complete ℂ -algebra if 𝑛 = 3𝑘 with 𝑘 ∈ ℕ 

𝕊(𝑝;𝑝)  is a complete ℂ -algebra generated by the complete ℂ -algebra 𝕊(𝑛;𝑛) if 𝑝 = 3𝑛. 

4.3 The complete ℂ-algèbre 𝕊(3n;3n) 
If 𝑃(𝑛;𝑛)  is a hyper-plane associated with  𝕊(𝑛;𝑛) a complete ℂ-algèbre in 2𝑛 dimensions, with real and imaginary bases 

{𝑣1,𝑟  ; 𝑣2,𝑟  ; ……… ; 𝑣𝑛,𝑟} ; {𝑣1,𝑖 ; 𝑣2,𝑖 ; ……… ; 𝑣𝑛,𝑖}, then there exist two other hyper-planes 𝑃′(𝑛;𝑛) associated with  𝕊′(𝑛;𝑛) a  2𝑛 di-

mensional ℂ-algebra, with real and imaginary bases {𝑣(𝑛+1),𝑟  ; 𝑣(𝑛+2),𝑟 ; ……… ; 𝑣2𝑛,𝑟} ; {𝑣(𝑛+1),𝑖 ; 𝑣(𝑛+2),𝑖 ; ……… ; 𝑣2𝑛,𝑖} and 

𝑃′′(𝑛;𝑛) associated with 𝕊′′(𝑛;𝑛) a 2𝑛 dimensional ℂ-algebra, with real and imaginary bases {𝑣(2𝑛+1),𝑟 ;  𝑣(2𝑛+2),𝑟 ; ……… ; 𝑣3𝑛,𝑟} ; 
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{𝑣(2𝑛+1),𝑖 ;  𝑣(2𝑛+2),𝑖 ; ……… ; 𝑣3𝑛,𝑖}. 

Under these conditions the orthogonal superposition of the hyper-planes 𝑃(𝑛;𝑛) ; 𝑃′(𝑛;𝑛) and 𝑃′′(𝑛;𝑛) gives us a hyperspace        

𝐸(3𝑛;3𝑛) = 𝑃(𝑛;𝑛) ⊥ 𝑃′(𝑛;𝑛) ⊥ 𝑃′′(𝑛;𝑛) noted: 

𝐸(3𝑛;3𝑛) = {(𝑣1,𝑟  ; 𝑣2,𝑟  ; ………… ; 𝑣3𝑛,𝑟) ; (𝑣1,𝑖 ;  𝑣2,𝑖 ; ………… ; 𝑣3𝑛,𝑖)}. 

Consequently, the set  𝕊(3𝑛;3𝑛) is a complete ℂ-algèbre generated by the complete ℂ-algèbre 𝕊(𝑛;𝑛) with higher bases:                           

𝑉𝜌
√3𝑛

1,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑖 )
3𝑛
𝑝=1 ]

  and 𝑉𝜌
√3𝑛

2,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
3𝑛
𝑝=1 ]

 respectively the real basis and imaginary basis (where 2n is the dimension 

of  𝕊(𝑛;𝑛)). 

4.3.1 Hyper-planes 𝑷(3n; 3n) 

The geometric and orthogonal superposition of the planes 𝑃(𝑛;𝑛) ; 𝑃′(𝑛;𝑛) and  𝑃′′(𝑛;𝑛)  gave us the hyperspace 𝐸(3𝑛;3𝑛) associated with 

the set 𝕊(3𝑛;3𝑛) to 3𝑛 real and imaginary dimensions. 

If  ℎ1 = 𝑋1,𝑟 𝑉𝜌
√𝑛

1,𝑟 + 𝑌2,𝑖 𝑉𝜌
√𝑛

2,𝑖 is the affix of a hyper-point of the plane 𝑃(𝑛;𝑛) 

          𝑋1,𝑟 a linear combination with real coefficients and real bases 

          𝑌2,𝑖 a linear combination with real coefficients and imaginary bases 

          𝑉𝜌
√𝑛

1,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑟 )
𝑛
𝑝=1 ]

  and  𝑉𝜌
√𝑛

2,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
𝑛
𝑝=1 ]

 

If   ℎ2 = 𝑌1,𝑟 𝑉𝜌
√𝑛

2,𝑟 + 𝑍2,𝑖 𝑉𝜌
√𝑛

3,𝑖  is the affix of a hyper-point of the plane  𝑃′(𝑛;𝑛) 

          𝑌1,𝑟  a linear combination with 𝑛 real coefficients and 𝑛 real bases 

          𝑍2,𝑖  a linear combination with 𝑛 real coefficients and 𝑛 imaginary bases 

          𝑉𝜌
√𝑛

2,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑟 )
2𝑛
𝑝=𝑛+1 ]

  and   𝑉𝜌
√𝑛

3,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
2𝑛
𝑝=𝑛+1 ]

 

If   ℎ3 = 𝑍1,𝑟 𝑉𝜌
√𝑛

3,𝑟 + 𝑋2,𝑖 𝑉𝜌
√𝑛

1,𝑖  is the affix of a hyper-point of the plane 𝑃′′(𝑛;𝑛) 

          𝑍1,𝑟  a linear combination with 𝑛 real coefficients and 𝑛 real bases 
          𝑋2,𝑖 a linear combination with 𝑛 real coefficients and 𝑛 imaginary bases 

          𝑉𝜌
√𝑛

3,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑟 )
3𝑛
𝑝=2𝑛+1 ]

  and   𝑉𝜌
√𝑛

1,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
3𝑛
𝑝=3𝑛+1 ]

 

Then at any point 𝑀in the space, 𝐸(3𝑛;3𝑛) we can associate a number ℎ = ℎ1 + ℎ2 + ℎ3 

Therefore, we have: 

ℎ = (𝑋1,𝑟 𝑉𝜌
√𝑛

1,𝑟 + 𝑌2,𝑖 𝑉𝜌
√𝑛

2,𝑖) + (𝑋2,𝑟 𝑉𝜌
√𝑛

2,𝑟 + 𝑌3,𝑖 𝑉𝜌
√𝑛

3,𝑖) + (𝑋3,𝑟 𝑉𝜌
√𝑛

3,𝑟 + 𝑌1,𝑖 𝑉𝜌
√𝑛

1,𝑖 )             

ℎ = 𝑋1,𝑟 𝑉𝜌
√𝑛

1,𝑟 + 𝑋2,𝑟 𝑉𝜌
√𝑛

2,𝑟 + 𝑋3,𝑟 𝑉𝜌
√𝑛

3,𝑟 + 𝑌1,𝑖 𝑉𝜌
√𝑛

1,𝑖 + 𝑌2,𝑖 𝑉𝜌
√𝑛

2,𝑖 + 𝑌3,𝑖 𝑉𝜌
√𝑛

3,𝑖  

The hyper-complex writing of the number h of dimension 2 × 3𝑛 = 6𝑛 includes two parts: 

A real part  𝑞𝑟 = 𝑋1,𝑟 𝑉𝜌
√𝑛

1,𝑟 + 𝑋2,𝑟 𝑉𝜌
√𝑛

2,𝑟 + 𝑋3,𝑟 𝑉𝜌
√𝑛

3,𝑟 

An imaginary game 𝑞𝑖 = 𝑌1,𝑖 𝑉𝜌
√𝑛

1,𝑖 + 𝑌2,𝑖 𝑉𝜌
√𝑛

2,𝑖 + 𝑌3,𝑖 𝑉𝜌
√𝑛

3,𝑖 

Then for any number ℎ ∈ 𝕊(3𝑛;3𝑛) , there exist two numbers  𝐴1,𝑟  and  𝐵2,𝑖 such that: 

ℎ = 𝐴1,𝑟 𝑉𝜌
√3𝑛

1,𝑟 + 𝐵2,𝑖 𝑉𝜌
√3𝑛

2,𝑖  

With 𝐴1,𝑟 a linear combination with real coefficients and real bases of dimension 3𝑛 and module 1. If we note 𝑆𝜌
√2𝑛

𝑝,𝑟  the intermediate 

real bases of module  1 , then: 𝐴1,𝑟 = ∑ (𝑋𝑝,𝑟
3
𝑝=1 𝑆𝜌

√2𝑛
𝑝,𝑟)   with  𝑝 ∈ {1 ; 2 ; 3} and  𝑋𝑝,𝑟   ; the real coefficients of any number                   

ℎ ∈ 𝕊(3𝑛;3𝑛). 

With 𝐵2,𝑖  a linear combination with real coefficients and imaginary bases of dimension 3n and imaginary module  𝜌2𝑛 = √2𝑛. If we 

note  𝑆𝜌
√2𝑛

𝑝,𝑖  the intermediate imaginary bases of module 𝜌2𝑛 = √2𝑛  then: 𝐵2,𝑖 = ∑ 𝑌𝑝,𝑖
3
𝑝=1 𝑆𝜌

√2𝑛
𝑝,𝑖   with 𝑝 ∈ {1 ; 2 ; 3}  and 𝑌𝑝,𝑖 ; the 

imaginary coefficients for any number ℎ ∈ 𝕊(3𝑛;3𝑛). 

Thus we obtain a complex hyper-plane 𝑃(3𝑛;3𝑛) with 6n dimensions of bases greater than { 𝑉𝜌
√3𝑛

1,𝑟 ;  𝑉𝜌
√3𝑛

2,𝑖 }  of real module 1 and 

imaginary module 𝜌3𝑛 = √3𝑛. 
We can also obtain the hyper-plane with the numbers 𝐴1,𝑟  and 𝐵2,𝑖 from linear combinations respectively with the (2𝑛 − 1)𝑡ℎ  real 

module bases 1 and imaginary module bases 𝜌2𝑛−1 = √2𝑛 − 1 

4.3.2 Subsets of 𝕊(3n; 3n) 
In addition to the set 𝕊(𝑛;𝑛) and its subsets we distinguish the subsets 𝕊(𝑚;𝑙) with   𝑛 ≤ 𝑚 ≤ 3𝑛  and 𝑛 ≤ 𝑙 ≤ 3𝑛; with special cases: if 

𝑚 = 3𝑛 then 𝑙 < 3𝑛 and if 𝑙 = 3𝑛 then  𝑚 < 3𝑛. 
The upper bases of the subsets  𝕊(𝑚;𝑙) are respectively: 

𝑉𝜌
√𝑚

1,𝑟 = 𝑒2𝑘𝜋[∑ (𝑣𝑝,𝑟 )
𝑚
𝑝=1 ]

: real base 
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𝑉𝜌
√𝑙

2,𝑖 = 𝑒
𝜋

2
[∑ (𝑣𝑝,𝑖 )
𝑙
𝑝=1 ]

: imaginary base 

4.4 Change of orbital and hyper-space 
We saw above that the set 𝕊(𝑛;𝑛) (a complete ℂ-algèbre of dimension 𝑛) and its subsets all have primary bases; intermediate bases 

and a higher base of respective modules: 𝜌1  =  √1 ; 𝜌2  =  √2  ; 𝜌3 = √3 ; ………. ;  𝜌𝑛 = √𝑛. Which is already consistent with the 
non-continuous distribution of atomic orbitals. 
We know that multiplying bases leads to a change of bases and therefore a discrete variation of their modules. 

 For example for the set 𝕊(3;3) if we do the product of the base 𝑣1,𝑖 by the base 𝑣2,𝑖  we have: 

𝑣1,𝑖 × 𝑣2,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 ×𝑒

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑠2,𝑖  

We have a passage from 𝜌1 = √1 to 𝜌2 = √2  

 Then let's make the product 

𝑣3,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 ×𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑢2,𝑖  

We have a passage from 𝜌2 = √2 to 𝜌3 = √3 

 And inversely we have 

𝑢2,𝑖 × 𝑣2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) ×𝑒

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖+𝑣3,𝑖) = −𝑠1,𝑖  

We have a transition from 𝜌3 = √3 to 𝜌2 = √2 

 Likewise 

𝑢2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) ×𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+2𝑣2,𝑖+𝑣3,𝑖) = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖  

We have a transition from 𝜌3 = √3 to 𝜌1 = √1 

 Now what about the change of hyper-space? 
Let us make the product of 

𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) ×𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖+𝑣4,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+2𝑣2,𝑖+2𝑣3,𝑖+𝑣4,𝑖) = −𝑒

𝜋

2
𝑣4,𝑖 = −𝑣4,𝑖  

Which means that we completely leave the set 𝕊(3;3).  

All this is like jumping from one orbital to another. 

4.5 Hypotheses on the distribution and angular orientation of the intermediate and upper bases 
We know that, beyond a dimension  𝑛 > 3; that is to say with the superposition of the three hyper-planes of dimension 6 to obtain 
the hyper-space of dimension 18, the notion of angles is difficult to visualize and requires the introduction of the notion of hyper-

angles. In any case, angles of measurement 
𝜋

4
 rd appear in the hyper-space of dimension 6. This means a space where there are the 

angles 𝛼0 = 2𝜋 ; 𝛼1 = 𝜋 ; 𝛼2 =
𝜋

2
  and 𝛼3 =

𝜋

4
 . We notice the appearance of a sequel. 

Which leads me to propose the following hypotheses for the angles which gives the orientations of the primary, intermediate and 
upper bases. 

 Hypothesis 1: 

𝛼0 =
2𝜋

20
= 2𝜋 ; 𝛼1 =

2𝜋

21
= 𝜋 ; 𝛼3 =

2𝜋

22
=
𝜋

2
  ;  𝛼1 =

2𝜋

23
=
𝜋

4
   for dimensions 6  𝕊(3;3) 

We can then say that, for a dimension 2𝑛 we have the angles: 

𝛼0 =
2𝜋

20
 ;  𝛼1 =

2𝜋

21
  ;  𝛼2 =

2𝜋

22
  ;  𝛼3 =

2𝜋

23
  ; ……… ; 𝛼𝑛 =

2𝜋

2𝑘
   

Then we see that the sum of the angles gives the series: 

𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + …………+ 𝛼𝑛 =
2𝜋

20
+
2𝜋

21
+
2𝜋

22
+
2𝜋

23
+ ……… +

2𝜋

2𝑛
 

If we note  𝑆𝛼𝑘 = 𝛼0 + 𝛼1 + 𝛼2 + 𝛼3 + …………+ 𝛼𝑛 

𝑆𝛼𝑘 =∑
2𝜋

2𝑛

𝑛

𝑘=0

= 2𝜋∑
1

2𝑛

𝑛

𝑘=0

 

For 𝑛 = ∞ then  𝑆𝛼∞ = 2𝜋∑
1

2𝑛

∞

𝑘=0

= 2𝜋 ×
1

1 −
1
2

= 4𝜋 

We can clearly see that the sum of the angles which gives the orientations of the primary, intermediate and upper bases is convergent. 

 Hypothesis 2: 
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𝛼1 =
𝜋

2(2 − 1)
=
𝜋

2
 ; 𝛼2 =

𝜋

2(3 − 1)
=
𝜋

4
 ;  for dimensions 6  𝕊(3;3) 

We can then assume that for a given dimension 2𝑛 we have the angles: 

𝛼1 =
𝜋

2(2 − 1)
=
𝜋

2
 ; 𝛼2 =

𝜋

2(3 − 1)
=
𝜋

4
  ;  𝛼3 =

𝜋

2(4 − 1)
=
𝜋

6
  ; ……… ; 𝛼𝑛−1 =

𝜋

2(𝑛 − 1)
 

Then we see that the sum of the angles gives the series: 

𝛼1 + 𝛼2 + 𝛼3 + …………+ 𝛼𝑛−1 =
𝜋

2
+
𝜋

4
+
𝜋

6
+ ………+

𝜋

2(𝑛 − 1)
 

𝛼1 + 𝛼2 + 𝛼3 + …………+ 𝛼𝑛−1 =
𝜋

2
(1 +

1

2
+
1

3
+ ………+

𝜋

(𝑛 − 1)
) 

𝑆𝛼𝑘−1 =
𝜋

2
∑
1

𝑝

𝑛−1

𝑝=1

= 
𝜋

2
(−

1

𝑛
+∑

1

𝑝

𝑛

𝑝=1

) ;  with 𝑘 ∈ ℕ and 𝑝 ∈ ℕ 

For 𝑛 = ∞ then   𝑆𝛼∞ =
𝜋

2
∑
1

𝑝

∞

𝑝=1

=
𝜋

2
𝜁(1) 

We see here that, in this case, the sum of the angles which gives the orientations of the primary, intermediate and upper bases is 
harmonic. 

5 CONCLUSION 

We have just seen that if we use the Euler’s formula for complex numbers, we can make an n-dimensional extension of complex 

numbers. For a 3-dimensional extension with real base 1 and complex bases  𝑖 = 𝑒
𝜋

2
 𝑖

 and  𝑗 = 𝑒
𝜋

2
 𝑗

; we see that the multiplication of 

complexe numbers 𝑖 ×  𝑗 = 𝑗 ×  𝑖 = 𝑒
𝜋

2
 𝑖
 ×  𝑒

𝜋

2
 𝑗
 = 𝑒

𝜋

2
 𝑗
 ×   𝑒

𝜋

2
 𝑖
= 𝑒

𝜋

2
 (𝑖 + 𝑗)

 gives us, in a commutative way, a unique complex num-

ber  𝑒
𝜋

2
 (𝑖 + 𝑗)

. The complex number 𝑒
𝜋

2
 (𝑖 + 𝑗)

 represents the complex superposition of the complex numbers 𝑖 and 𝑗 whose module is 

equal to √2. Still, in this article we see clearly that we can define a commutative algebra on hyper-complex numbers. All this thanks to 
the work of the illustrious and gread mathematicians such as Leonard Euler, Jérôme Cardan, Jean Robert Argand and that who 
contributed to making complex numbers a field of study in mathematics. This despite the fact that complex numbers were 
considered as an artificial mathematical calculation tool by most of comtemporary mathematecians of thier time. 
Here we note some analogies with quantum physics. This allow me to ask myself the question: if it is possible to superimpose two 
electric currents in the same electronic circuit in a under control way? This will allow the development of electronic circuits and tran-
sistors capable of superimposing and circulating two different electric currents, in a way to superimposing two binary codes. This offers 
a manageable approach and mathematical basis for the development of quantum computing as well as quantum telecommunication. 
Can we have here a calculation basis for the development of nuclear fusion reactor based on hyper-complex superposition fusion of 
atoms? Likewise, can we see here a calculation basis for supraluminal travel interstellar space by a form of space-time superposition? 
Knowing that multiplication of hyper-complex numbers allows jumps from one orbital to another. This Would be in accordance with 
Albert Einstein’s theory of relativity; the notion of hyper-plan males it possible to describe a complex space by a plan, just like the 
reprensetatin of space time made by this great physicist. We should also note that an application to the zeta function, would certainly 
yield interesting results? 
However, this is not an exhaustive study. It is up to all the world’s scientific community to improve and perfect it and each of them in 
there field of research. 
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Appendices 

A. Data for the development of table 6 

To establish the data in table 6, we will use the imaginary product ⨂i
e defined in paragraph (4.4.1. p24) 

 List of primary bases: 𝑣1,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖  ; 𝑣2,𝑖 = 𝑒

𝜋

2
𝑣2,𝑖  and 𝑣3,𝑖 = 𝑒

𝜋

2
𝑣3,𝑖  

 List of intermediate bases:  𝑠1,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) ;  𝑠2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) ;   𝑠3,𝑖 = 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) ;  𝑠4,𝑖 = 𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) ;  𝑠5,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) 

and  𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) 

 List of upper bases:      𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖 ) ;  𝑢2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖);  𝑢3,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖)   and   𝑢4,𝑖 = 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) 

 In the subset  𝕊(1;3) we have:  𝑣1,𝑟  = 𝑣2,𝑟 = 𝑣3,𝑟 = 𝑣𝑟 (where  𝑣1,𝑟 = 𝑒2𝑘𝜋𝑣2,𝑖  ; 𝑣2,𝑟 = 𝑒2𝑘𝜋𝑣3,𝑖  ;  𝑣3,𝑟 = 𝑒2𝑘𝜋𝑣1,𝑖). 

a. Multiplication of primary imaginary bases between them: 

 𝑣1,𝑖 × 𝑣1,𝑖 = (𝑣1,𝑖)
2
= (𝑒

𝜋

2
𝑣1,𝑖)

2

= 𝑒𝜋𝑣1,𝑖 = −𝑒2𝑘𝜋𝑣1,𝑖 = −𝑣3,𝑟 = −𝑣𝑟  

In the following, we will use the same approach for calculating the squares of primary imaginary bases. 

 𝑣1,𝑖 × 𝑣2,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
𝑣2,𝑖 = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑠2,𝑖 

 𝑣2,𝑖 × 𝑣2,𝑖 = (𝑣2,𝑖)
2
= (𝑒

𝜋

2
𝑣2,𝑖)

2

= 𝑒𝜋𝑣2,𝑖 = −𝑣𝑟  

 𝑣2,𝑖 × 𝑣3,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
𝑣3,𝑖 = 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑠3,𝑖 

 𝑣3,𝑖 × 𝑣3,𝑖 = (𝑣3,𝑖)
2
= (𝑒

𝜋

2
𝑣3,𝑖)

2

= 𝑒𝜋𝑣3,𝑖 = −𝑣𝑟  

 𝑣1,𝑖 × 𝑣3,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
𝑣3,𝑖 = 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = 𝑠1,𝑖 

b. Multiplication of the primary imaginary base 𝒗𝟏,𝒊 with the intermediate and upper imaginary bases: 

 𝑣1,𝑖 × 𝑠1,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖+2𝑣1,𝑖) = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖 

 𝑣1,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+𝑣2,𝑖) = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖 

 𝑣1,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑢2,𝑖 

 𝑣1,𝑖 × 𝑠4,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖+0𝑣1,𝑖) = 𝑒

𝜋

2
𝑣3,𝑖 = 𝑣3,𝑖  

 𝑣1,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖−𝑣2,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖 − 𝑣2,𝑖) = −𝑒

𝜋

2
(− 𝑣2,𝑖) = −(− 𝑣2,𝑖) = 𝑣2,𝑖 

 𝑣1,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖) = 𝑢3,𝑖 

 𝑣1,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(𝑣3,𝑖 +2𝑣1,𝑖−𝑣2,𝑖 ) = −𝑒

𝜋

2
(𝑣3,𝑖 −𝑣2,𝑖 ) = −𝑒−

𝜋

2
(𝑣2,𝑖 −𝑣3,𝑖 ) = −(−𝑠6,𝑖) = 𝑠6,𝑖  

 𝑣1,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣2,𝑖+ 𝑣3,𝑖) = −𝑠3,𝑖 

 𝑣1,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣2,𝑖− 𝑣3,𝑖) = −𝑠6,𝑖 

 𝑣1,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
𝑣1,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖+0𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖) = 𝑠3,𝑖 

c. Multiplication of the primary imaginary base 𝒗𝟐,𝒊 with the intermediate and upper imaginary bases: 

 𝑣2,𝑖 × 𝑠1,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑢2,𝑖 

 𝑣2,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖) = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖   

 𝑣2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖+𝑣3,𝑖) = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖 

 𝑣2,𝑖 × 𝑠4,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑢4,𝑖  

 𝑣2,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖−𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+0𝑣2,𝑖) = 𝑒

𝜋

2
𝑣1,𝑖 = 𝑣1,𝑖 

 𝑣2,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖 − 𝑣3,𝑖) = −𝑒

𝜋

2
(−𝑣3,𝑖) = −(−𝑣3,𝑖) = 𝑣3,𝑖 

 𝑣2,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖+0𝑣2,𝑖 ) = 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖) = 𝑠1,𝑖 

  𝑣2,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+ 𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖+ 𝑣3,𝑖) = −𝑠1,𝑖 
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  𝑣2,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖− 𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖− 𝑣3,𝑖) = −𝑒−

𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) = −(−𝑠4,𝑖) = 𝑠4,𝑖 

  𝑣2,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
𝑣2,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = −𝑒

𝜋

2
(2𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = −𝑒

𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) = −𝑠4,𝑖 

d. Multiplication of primary imaginary base 𝒗𝟑,𝒊 with the intermediate imaginary and upper imaginary bases: 

 𝑣3,𝑖 × 𝑠1,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣3,𝑖+𝑣1,𝑖) = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖 

 𝑣3,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑢2,𝑖 

 𝑣3,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖+2𝑣3,𝑖) = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖 

 𝑣3,𝑖 × 𝑠4,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣3,𝑖−𝑣1,𝑖) = −𝑒−

𝜋

2
𝑣1,𝑖 = −(−𝑣1,𝑖) = 𝑣1,𝑖 

 𝑣3,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖) = 𝑢1,𝑖 

 𝑣3,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖 +0𝑣3,𝑖) = 𝑒

𝜋

2
𝑣2,𝑖 = 𝑣2,𝑖  

 𝑣3,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 ×= 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(2𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = −𝑒

𝜋

2
(𝑣1,𝑖−𝑣2,𝑖 ) = −𝑠5,𝑖 

 𝑣3,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+2𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = −𝑠2,𝑖 

 𝑣3,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+0𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑠2,𝑖 

 𝑣3,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
𝑣3,𝑖 × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖 + 2𝑣3,𝑖−𝑣1,𝑖) = −𝑒

𝜋

2
(𝑣2,𝑖 −𝑣1,𝑖) = −𝑒−

𝜋

2
(𝑣1,𝑖−𝑣2,𝑖 ) = −(−𝑠5,𝑖) = 𝑠5,𝑖  

e. Multiplication of intermediate imaginary bases between them: 

 𝑠1,𝑖 × 𝑠1,𝑖 = (𝑠1,𝑖)
2
= (𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖))

2

= 𝑒𝜋(𝑣3,𝑖+𝑣1,𝑖) = −𝑣𝑟  

Here, it must be noted that: 

𝑒𝜋(𝑣3,𝑖+𝑣1,𝑖) = −𝑒2𝑘𝜋(𝑣3,𝑖+𝑣1,𝑖) = −(𝑒2𝑘𝜋 𝑣3,𝑖 × 𝑒2𝑘𝜋 𝑣1,𝑖) = −(𝑣2,𝑟 × 𝑣3,𝑟 )  
Knowing that, in the subset  𝕊(1;3) we had posed that;  𝑣1,𝑟 = 𝑣2,𝑟 = 𝑣3,𝑟 = 𝑣𝑟  

So 𝑒𝜋(𝑣3,𝑖+𝑣1,𝑖) = −(𝑣2,𝑟 × 𝑣3,𝑟 ) = −(𝑣𝑟 )2 = −𝑣𝑟  
In the following, we will use the same approach for calculating the squares of intermediates or upper imaginary bases. 

 𝑠1,𝑖 × 𝑠2,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = −𝑠3,𝑖 

 𝑠1,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+2𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = −𝑠2,𝑖 

 𝑠1,𝑖 × 𝑠4,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣3,𝑖 +0 𝑣1,𝑖) = 𝑒𝜋𝑣3,𝑖 = −𝑣𝑟  

 𝑠1,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖 +𝑣3,𝑖− 𝑣2,𝑖) = −𝑒

𝜋

2
(𝑣3,𝑖− 𝑣2,𝑖) = −𝑒−

𝜋

2
(𝑣2,𝑖−𝑣3,𝑖) = −(−𝑠6,𝑖) = 𝑠6,𝑖  

 𝑠1,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+0 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) = 𝑠2,𝑖 

 𝑠2,𝑖 × 𝑠2,𝑖 = (𝑠2,𝑖)
2
= (𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖))

2

= 𝑒𝜋(𝑣1,𝑖+𝑣2,𝑖) = −𝑣𝑟  

 𝑠2,𝑖 × 𝑠3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = −𝑠1,𝑖 

 𝑠2,𝑖 × 𝑠4,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖+0𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) = 𝑠3,𝑖 

 𝑠2,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖 +0𝑣2,𝑖) = 𝑒𝜋𝑣1,𝑖 = −𝑣𝑟  

 𝑠2,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖− 𝑣3,𝑖) = −𝑒

𝜋

2
(𝑣1,𝑖− 𝑣3,𝑖) = −𝑒−

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) = −(−𝑠4,𝑖) = 𝑠4,𝑖 

 𝑠3,𝑖 × 𝑠3,𝑖 = (𝑠3,𝑖)
2
= (𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖))

2

= 𝑒𝜋(𝑣2,𝑖+𝑣3,𝑖) = −𝑣𝑟 

 𝑠3,𝑖 × 𝑠4,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖+2𝑣3,𝑖−𝑣1,𝑖) = −𝑒

𝜋

2
(𝑣2,𝑖−𝑣1,𝑖) = −𝑒−

𝜋

2
(𝑣1,𝑖 – 𝑣2,𝑖) = −(−𝑠5,𝑖) = 𝑠5,𝑖  

 𝑠3,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖 +0𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) = 𝑠1,𝑖 

 𝑠3,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖 +0 𝑣3,𝑖) = 𝑒𝜋𝑣2,𝑖 = −𝑣𝑟 

 𝑠4,𝑖 × 𝑠4,𝑖 = (𝑠4,𝑖)
2
= (𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖))

2

= 𝑒𝜋(𝑣3,𝑖 − 𝑣1,𝑖) = −𝑣𝑟 

 𝑠4,𝑖 × 𝑠5,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖 +0𝑣1,𝑖 − 𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖 − 𝑣2,𝑖) = 𝑒−

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = −𝑠6,𝑖  

 𝑠4,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖−𝑣1,𝑖+0𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖−𝑣1,𝑖) = 𝑒−

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) = −𝑠5,𝑖 
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 𝑠5,𝑖 × 𝑠5,𝑖 = (𝑠5,𝑖)
2
= (𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖))

2

= 𝑒𝜋(𝑣1,𝑖 − 𝑣2,𝑖) = −𝑣𝑟 

 𝑠5,𝑖 × 𝑠6,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖 +0𝑣2,𝑖 − 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖 − 𝑣3,𝑖) = 𝑒−

𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) = −𝑠4,𝑖  

 𝑠6,𝑖 × 𝑠6,𝑖 = (𝑠6,𝑖)
2
= (𝑒

𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖))

2

= 𝑒𝜋(𝑣2,𝑖 − 𝑣3,𝑖) = −𝑣𝑟 

f. Multiplication of the intermediate imaginary base 𝒔𝟏,𝒊 with the upper imaginary bases: 

 𝑠1,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(2𝑣3,𝑖 +2𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
[2(𝑣3,𝑖 +𝑣1,𝑖)−𝑣2,𝑖 ] = −𝑒−

𝜋

2
𝑣2,𝑖 = −(−𝑣2,𝑖 ) = 𝑣2,𝑖  

Note: here, in the imaginary product, we give priority to the intermediate imaginary base 𝑠1,𝑖 = 𝑣3,𝑖 + 𝑣1,𝑖. 

Which gives us:  𝑒
𝜋

2
[2(𝑣3,𝑖 +𝑣1,𝑖)−𝑣2,𝑖 ] = 𝑒

𝜋

2
[2(𝑠1,𝑖)−𝑣2,𝑖 ] = −𝑒−

𝜋

2
𝑣2,𝑖  

So in similar cases, priority is given to intermediate or upper bases. 

 𝑠1,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+𝑣2,𝑖+ 2𝑣3,𝑖) = 𝑒

𝜋

2
[2(𝑣1,𝑖+𝑣3,𝑖 )+𝑣2,𝑖] = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖  

 𝑠1,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+𝑣2,𝑖+0𝑣3,𝑖) = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖 

 𝑠1,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖+ 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖+2𝑣3,𝑖+0𝑣1,𝑖) = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖 

g. Multiplication of the intermediate imaginary base 𝒔𝟐,𝒊 with the upper imaginary bases: 

 𝑠2,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(𝑣3,𝑖+2𝑣1,𝑖+0𝑣2,𝑖 ) = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖 

 𝑠2,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+2𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
[2(𝑣1,𝑖+𝑣2,𝑖)+ 𝑣3,𝑖] = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖  

 𝑠2,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+2𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
[2(𝑣1,𝑖+𝑣2,𝑖)− 𝑣3,𝑖] = −𝑒−

𝜋

2
𝑣3,𝑖 = −(−𝑣3,𝑖) = 𝑣3,𝑖 

 𝑠2,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖+ 𝑣3,𝑖+0𝑣1,𝑖) = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖 

h. Multiplication of the intermediate imaginary base 𝒔𝟑,𝒊 with the upper imaginary bases: 

 𝑠3,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(2𝑣3,𝑖 +𝑣1,𝑖+0𝑣2,𝑖 ) = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖 

 𝑠3,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+ 2𝑣3,𝑖) = 𝑒

𝜋

2
[𝑣1,𝑖+2(𝑣2,𝑖+ 𝑣3,𝑖)] = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖 

 𝑠3,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+0𝑣3,𝑖) = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖 

 𝑠3,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖+𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖 + 2𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
[2(𝑣2,𝑖 +𝑣3,𝑖)−𝑣1,𝑖] = −𝑒−

𝜋

2
𝑣1,𝑖 = −(−𝑣1,𝑖) = 𝑣1,𝑖 

i. Multiplication of the intermediate imaginary base 𝒔𝟒,𝒊 with the upper imaginary bases: 

 𝑠4,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(2𝑣3,𝑖+0𝑣1,𝑖−𝑣2,𝑖 ) = −𝑒−

𝜋

2
𝑣2,𝑖 = −(−𝑣2,𝑖 ) = 𝑣2,𝑖  

 𝑠4,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(0𝑣1,𝑖+𝑣2,𝑖+2𝑣3,𝑖) = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖  

 𝑠4,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖−𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖) = 𝑒

𝜋

2
(0𝑣1,𝑖+𝑣2,𝑖+0𝑣3,𝑖) = 𝑒

𝜋

2
𝑣2,𝑖 = 𝑣2,𝑖  

 𝑠4,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 − 𝑣1,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(𝑣2,𝑖 + 2𝑣3,𝑖−2𝑣1,𝑖) = 𝑒

𝜋

2
[𝑣2,𝑖+2(𝑣3,𝑖−𝑣1,𝑖)] = −𝑒

𝜋

2
𝑣2,𝑖 = −𝑣2,𝑖  

j. Multiplication of the intermediate imaginary base 𝒔𝟓,𝒊 with the upper imaginary bases: 

 𝑠5,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖− 𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖) = 𝑒

𝜋

2
(𝑣3,𝑖+2𝑣1,𝑖−2𝑣2,𝑖) = 𝑒

𝜋

2
[𝑣3,𝑖+2(𝑣1,𝑖−𝑣2,𝑖)] = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖 

 𝑠5,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖−𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+0𝑣2,𝑖+𝑣3,𝑖) = −𝑒

𝜋

2
𝑣3,𝑖 = −𝑣3,𝑖  

 𝑠5,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖−𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+0𝑣2,𝑖−𝑣3,𝑖) = −𝑒−

𝜋

2
𝑣3,𝑖 = −(−𝑣3,𝑖) = 𝑣3,𝑖  

 𝑠5,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖 − 𝑣2,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(0𝑣2,𝑖 + 𝑣3,𝑖+0𝑣1,𝑖) = 𝑒

𝜋

2
𝑣3,𝑖 = 𝑣3,𝑖 

k. Multiplication of the intermediate imaginary base 𝒔𝟔,𝒊 with the upper imaginary bases: 

 𝑠6,𝑖 × 𝑢1,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖 ) = 𝑒

𝜋

2
(0𝑣3,𝑖+𝑣1,𝑖+0𝑣2,𝑖 ) = 𝑒

𝜋

2
𝑣1,𝑖 = 𝑣1,𝑖 

 𝑠6,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖+0𝑣3,𝑖) = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖 

 𝑠6,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖 − 𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖) = 𝑒

𝜋

2
(𝑣1,𝑖+2𝑣2,𝑖−2𝑣3,𝑖) = 𝑒

𝜋

2
[𝑣1,𝑖+2(𝑣2,𝑖−𝑣3,𝑖)] = −𝑒

𝜋

2
𝑣1,𝑖 = −𝑣1,𝑖 

 𝑠6,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣2,𝑖− 𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖+0𝑣3,𝑖−𝑣1,𝑖) = −𝑒−

𝜋

2
𝑣1,𝑖 = −(−𝑣1,𝑖) = 𝑣1,𝑖 

l. Multiplication of upper imaginary bases between them: 

 𝑢1,𝑖 × 𝑢1,𝑖 = (𝑢1,𝑖)
2
= (𝑒

𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ))

2

= 𝑒𝜋(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) = −𝑣𝑟  
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 𝑢1,𝑖 × 𝑢2,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖 +𝑣1,𝑖−𝑣2,𝑖 ) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+0𝑣2,𝑖+2𝑣3,𝑖) = 𝑒

𝜋

2
[2(𝑣1,𝑖+𝑣3,𝑖)] = 𝑒𝜋(𝑣1,𝑖+𝑣3,𝑖) = −𝑣𝑟  

 𝑢1,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖 ) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+0𝑣2,𝑖+0𝑣3,𝑖) = 𝑒𝜋𝑣1,𝑖 = −𝑣𝑟  

 𝑢1,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣3,𝑖+𝑣1,𝑖−𝑣2,𝑖 ) × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(0𝑣2,𝑖+2𝑣3,𝑖+0𝑣1,𝑖) = 𝑒𝜋𝑣3,𝑖 = −𝑣𝑟  

  𝑢2,𝑖 × 𝑢2,𝑖 = (𝑢2,𝑖)
2
= (𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖))

2

= 𝑒𝜋(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) = −𝑣𝑟  

 𝑢2,𝑖 × 𝑢3,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = 𝑒

𝜋

2
(2𝑣1,𝑖+2𝑣2,𝑖+0𝑣3,𝑖) = 𝑒

𝜋

2
[2(𝑣1,𝑖+𝑣2,𝑖)] = 𝑒𝜋(𝑣1,𝑖+𝑣2,𝑖) = −𝑣𝑟  

 𝑢2,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖+ 𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖 +2𝑣3,𝑖+0𝑣1,𝑖) = 𝑒

𝜋

2
[2(𝑣2,𝑖+𝑣3,𝑖)] = 𝑒𝜋(𝑣2,𝑖+𝑣3,𝑖) = −𝑣𝑟  

 𝑢3,𝑖 × 𝑢3,𝑖 = (𝑢3,𝑖)
2
= (𝑒

𝜋

2
(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖))

2

= 𝑒𝜋(𝑣1,𝑖+𝑣2,𝑖− 𝑣3,𝑖) = −𝑣𝑟  

 𝑢3,𝑖 × 𝑢4,𝑖 = 𝑒
𝜋

2
(𝑣1,𝑖+𝑣2,𝑖−𝑣3,𝑖) × 𝑒

𝜋

2
(𝑣2,𝑖+𝑣3,𝑖−𝑣1,𝑖) = 𝑒

𝜋

2
(2𝑣2,𝑖+0𝑣3,𝑖+0𝑣1,𝑖) = 𝑒𝜋𝑣2,𝑖 = −𝑣𝑟  

 𝑢4,𝑖 × 𝑢4,𝑖 = (𝑢4,𝑖)
2
= (𝑒

𝜋

2
(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖))

2

= 𝑒𝜋(𝑣2,𝑖 + 𝑣3,𝑖−𝑣1,𝑖) = −𝑣𝑟  

We therefore obtain the commutative table for the subset  𝕊(1;3) 

× 𝑣𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠2,𝑖 𝑠3,𝑖 𝑠4,𝑖 𝑠5,𝑖 𝑠6,𝑖 𝑢1,𝑖 𝑢2,𝑖 𝑢3,𝑖 𝑢4,𝑖 

𝑣𝑟 𝑣𝑟 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠2,𝑖 𝑠3,𝑖 𝑠4,𝑖 𝑠5,𝑖 𝑠6,𝑖 𝑢1,𝑖 𝑢2,𝑖 𝑢3,𝑖 𝑢4,𝑖 

𝑣1,𝑖 𝑣1,𝑖 -𝑣𝑟 𝑠2,𝑖 𝑠1,𝑖 -𝑣3,𝑖 -𝑣2,𝑖 𝑢2,𝑖 𝑣3,𝑖 𝑣2,𝑖 𝑢3,𝑖 𝑠6,𝑖 -𝑠3,𝑖 -𝑠6,𝑖 𝑠3,𝑖 

𝑣2,𝑖 𝑣2,𝑖 𝑠2,𝑖 -𝑣𝑟 𝑠3,𝑖 𝑢2,𝑖 -𝑣1,𝑖 -𝑣3,𝑖 𝑢4,𝑖 𝑣1,𝑖 𝑣3,𝑖 𝑠1,𝑖 -𝑠1,𝑖 𝑠4,𝑖 -𝑠4,𝑖 

𝑣3,𝑖 𝑣3,𝑖 𝑠1,𝑖 𝑠3,𝑖 -𝑣𝑟 -𝑣1,𝑖 𝑢2,𝑖 -𝑣2,𝑖 𝑣1,𝑖 𝑢1,𝑖 𝑣2,𝑖 -𝑠5,𝑖 -𝑠2,𝑖 𝑠2,𝑖 𝑠5,𝑖 

𝑠1,𝑖 𝑠1,𝑖 -𝑣3,𝑖 𝑢2,𝑖 -𝑣1,𝑖 -𝑣𝑟 -𝑠3,𝑖 -𝑠2,𝑖 -𝑣𝑟 𝑠6,𝑖 𝑠2,𝑖 𝑣2,𝑖 -𝑣2,𝑖 -𝑣2,𝑖 -𝑣2,𝑖 

𝑠2,𝑖 𝑠2,𝑖 -𝑣2,𝑖 -𝑣1,𝑖 𝑢2,𝑖 -𝑠3,𝑖 -𝑣𝑟 -𝑠1,𝑟 𝑠3,𝑖 -𝑣𝑟 𝑠4,𝑖 -𝑣3,𝑖 -𝑣3,𝑖 𝑣3,𝑖 -𝑣3,𝑖 

𝑠3,𝑖 𝑠3,𝑖 𝑢2,𝑖 -𝑣3,𝑖 -𝑣2,𝑖 -𝑠2,𝑖 -𝑠1,𝑟 -𝑣𝑟 𝑠5,𝑖 𝑠1,𝑖 -𝑣𝑟 -𝑣1,𝑖 -𝑣1,𝑖 -𝑣1,𝑖 𝑣1,𝑖 

𝑠4,𝑖 𝑠4,𝑖 𝑣3,𝑖 𝑢4,𝑖 𝑣1,𝑖 -𝑣𝑟 𝑠3,𝑖 𝑠5,𝑖 -𝑣𝑟 -𝑠6,𝑖 -𝑠5,𝑖 𝑣2,𝑖 -𝑣2,𝑖 𝑣2,𝑖 -𝑣2,𝑖 

𝑠5,𝑖 𝑠5,𝑖 𝑣2,𝑖 𝑣1,𝑖 𝑢1,𝑖 𝑠6,𝑖 -𝑣𝑟 𝑠1,𝑖 -𝑠6,𝑖 -𝑣𝑟 -𝑠4,𝑖 -𝑣3,𝑖 -𝑣3,𝑖 𝑣3,𝑖 𝑣3,𝑖 

𝑠6,𝑖 𝑠6,𝑖 𝑢3,𝑖 𝑣3,𝑖 𝑣2,𝑖 𝑠2,𝑖 𝑠4,𝑖 -𝑣𝑟 -𝑠5,𝑖 -𝑠4,𝑖 -𝑣𝑟 𝑣1,𝑖 -𝑣1,𝑖 -𝑣1,𝑖 𝑣1,𝑖 

𝑢1,𝑖 𝑢1,𝑖 𝑠6,𝑖 𝑠1,𝑖 -𝑠5,𝑖 𝑣2,𝑖 -𝑣3,𝑖 -𝑣1,𝑖 𝑣2,𝑖 -𝑣3,𝑖 𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

𝑢2,𝑖 𝑢2,𝑖 -𝑠3,𝑖 -𝑠1,𝑖 -𝑠2,𝑖 -𝑣2,𝑖 -𝑣3,𝑖 -𝑣1,𝑖 -𝑣2,𝑖 -𝑣3,𝑖 -𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

𝑢3,𝑖 𝑢3,𝑖 -𝑠6,𝑖 𝑠4,𝑖 𝑠2,𝑖 -𝑣2,𝑖 𝑣3,𝑖 -𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 -𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

𝑢4,𝑖 𝑢4,𝑖 𝑠3,𝑖 -𝑠4,𝑖 𝑠5,𝑖 -𝑣2,𝑖 -𝑣3,𝑖 𝑣1,𝑖 𝑣2,𝑖 𝑣3,𝑖 𝑣1,𝑖 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 -𝑣𝑟 

 
B. Data for the development of table 7 

 List of primary bases:  𝑖 = 𝑒 
𝜋
2
 𝑖  and  𝑗 = 𝑒 

𝜋
2
 𝑗 

 List of upper bases:  𝑒 
𝜋
2
(𝑖+𝑗) and 𝑒 

𝜋
2
(𝑖−𝑗) 

a. Multiplication of primary imaginary bases between them: 

 𝑒 
𝜋
2
 𝑖 × 𝑒 

𝜋
2
 𝑖 = (𝑒 

𝜋
2
 𝑖)
2

= 𝑒 𝜋 𝑖 = −𝑒 2𝑘𝜋 𝑖 = −1 

 𝑒 
𝜋
2
 𝑖 × 𝑒 

𝜋
2
 𝑗 = 𝑒 

𝜋
2
(𝑖+𝑗)  

 𝑒 
𝜋
2
 𝑗 × 𝑒 

𝜋
2
 𝑗 = (𝑒 

𝜋
2
 𝑗)
2

= 𝑒 𝜋 𝑗 = −𝑒 2𝑘𝜋 𝑗 = −1 

b. Multiplication of primary imaginary base 𝒆 
𝝅
𝟐
 𝒊 with the upper imaginary bases: 
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 𝑒 
𝜋
2
 𝑖 × 𝑒 

𝜋
2
(𝑖+𝑗) = 𝑒 

𝜋
2
(2𝑖+𝑗) = −𝑒 

𝜋
2
 𝑗 

 𝑒 
𝜋
2
 𝑖 × 𝑒 

𝜋
2
(𝑖−𝑗) = 𝑒 

𝜋
2
(2𝑖−𝑗) = −𝑒− 

𝜋
2
 𝑗 = 𝑒 

𝜋
2
 𝑗 

c. Multiplication of primary imaginary base 𝒆 
𝝅
𝟐
 𝒋 with the upper imaginary bases: 

 𝑒 
𝜋
2
 𝑗 × 𝑒 

𝜋
2
(𝑖+𝑗) = 𝑒 

𝜋
2
(𝑖+2𝑗) = −𝑒 

𝜋
2
 𝑖 

 𝑒 
𝜋
2
 𝑗 × 𝑒 

𝜋
2
(𝑖−𝑗) = 𝑒 

𝜋
2
(𝑖+0𝑗) = 𝑒 

𝜋
2
 𝑖 

d. Multiplication of upper imaginary bases between them: 

 𝑒 
𝜋
2
(𝑖+𝑗) × 𝑒 

𝜋
2
(𝑖+𝑗) = (𝑒 

𝜋
2
(𝑖+𝑗))

2

= 𝑒 𝜋(𝑖+𝑗) = −𝑒 2𝑘𝜋(𝑖+𝑗) = −(𝑒 2𝑘𝜋𝑖 × 𝑒 2𝑘𝜋𝑗) = −(1 × 1) = −1 

 𝑒 
𝜋
2
(𝑖+𝑗) × 𝑒 

𝜋
2
(𝑖−𝑗) = 𝑒 

𝜋
2
(2𝑖+0𝑗) = 𝑒 𝜋 𝑖 = −𝑒 2𝑘𝜋 𝑖 = −1 

 𝑒 
𝜋
2
(𝑖−𝑗) × 𝑒 

𝜋
2
(𝑖−𝑗) = (𝑒 

𝜋
2
(𝑖−𝑗))

2

= (𝑒 
𝜋
2
(𝑖−𝑗))

2

= 𝑒 𝜋(𝑖−𝑗) = −𝑒 2𝑘𝜋(𝑖−𝑗) = −(𝑒 2𝑘𝜋𝑖 × 𝑒−2𝑘𝜋𝑗) = −(1 × 1) = −1 

We must remember that: 𝑒−𝜋𝑗 = 𝑒𝜋𝑗 = −1 and  𝑒−2𝑘𝜋𝑗 = 𝑒2𝑘𝜋𝑗 = 1 

We thus obtain the commutative table: 

× 1 𝑒 
𝜋
2
 𝑖

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 𝑒 
𝜋
2
(𝑖 − 𝑗)

 

1 1 𝑒 
𝜋
2
 𝑖

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 𝑒 
𝜋
2
(𝑖 − 𝑗)

 

𝑒 
𝜋
2
 𝑖

 𝑒 
𝜋
2
 𝑖

 -1 𝑒 
𝜋
2
(𝑖 + 𝑗)

 -𝑒 
𝜋
2
 𝑗 𝑒 

𝜋
2
 𝑗

 

𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 -1 -𝑒 
𝜋
2
 𝑖 𝑒 

𝜋
2
 𝑖

 

𝑒 
𝜋
2
(𝑖 + 𝑗)

 𝑒 
𝜋
2
(𝑖 + 𝑗)

 -𝑒 
𝜋
2
 𝑗 -𝑒 

𝜋
2
 𝑖 -1 -1 

𝑒 
𝜋
2
(𝑖 − 𝑗)

 𝑒 
𝜋
2
(𝑖 − 𝑗)

 𝑒 
𝜋
2
 𝑗

 𝑒 
𝜋
2
 𝑖

 -1 -1 
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