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 Abstract 

 Effects of the weight function on noise re duction in automobile engines is 

studied using (2+1) dimensional partial differential wave equation with damping function.The 

study establishes a design framework for the development and analysis of an active noise control 

system which can be applied to any vibrio-acoustic system mathematically, the acoustic pressure 

(unwanted noise) will be modelled by the wave equation defined on a two- dimensional domain 

(acoustic chamber). The acoustic and structural systems model equation derived is solved using 

finite difference method with a forward in time central in space (FTCS) numerical scheme. 

The effect of silencer weight on noise reduction from automobiles was then investigated.  

Key words: (2+1) Wave equation, damping parameter, silencer weight, Finite Difference 

Method [Forward in Time Central in Space Scheme] 
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INTRODUCTION AND LITERATURE REVIEW 

In the field of acoustics, noise is defined as an unpleasant or disliked sound. This definition 

is straightforward, but the difference between sound and noise is by no means precise. For 

example, in the opinion of some (older) people the sound of modern music is the equivalent 

of noise. On the other hand, few would say that the sound produced by passing traffic or a 

vacuum cleaner is pleasant as cited by Arau´jo and Madeira [1] .Noise problems have been 

around for a long time but the development of noise reduction technology is increasingly 

stimulated for several reasons. One reason is the realization that long-term exposure to high 

sound levels leads to hearing damage or even hearing loss. Furthermore, because of the 

tendency towards lightweight design noise problems arise more often. There are various 

methods for tackling noise problems. In the present work, a relatively new method is 

considered which is based on the application of active control techniques. Emphasis is on 

the development of analysis tools, the validation of these tools and their application for 

designing control systems for noise reduction. Sales in emerging countries such as China and 

India are thriving resulting in a global increase in the number of vehicles on the market. As 

of 2009, the total number of road vehicles worldwide was estimated to over a billion units 

a figure which may have doubled by 2016. Existing vehicle concepts are constantly being 

improved on in terms fuel consumption, safety, noise and other important characteristics 

but achieving drastic and efficient improvements in the future cannot be done without 

relying on multi-functional studies. This necessitates a change in the vehicle design process; 

future vehicles have to be thought of in terms of multi-functional systems in a larger extent, 

rather than in terms of individual sub-systems. Liu [2] proposed the spectral properties of a 
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linear two-dimensional hybrid system arising in the development of these new technologies for 

noise reduction in the interior of a cavity (plane, car, etc.) in a series of works. The idea of 

active control of sound and vibration is not new; Gao et al [ 3 ]  patented a technique for 

controlling sound with additional sound in the context of the control and stabilization of the 

wave equation in bounded domains, if one characteristic ray escapes to the dissipative region 

we cannot expect a uniform decay to hold. Indeed, the nature of the coupling between the 

acoustic and elastic components of the system that allow to build solutions with arbitrarily 

slow decay rate with the energy distributed in all of the domain and not only along some 

particular ray of geometrical optics as in Yang  et al [4]. Montenegro and Onorati [5] have 

shown that in various one-dimensional hybrid systems the coupling is such that the damping 

term is a compact perturbation of the underlying conservative dynamics. This kind of 

arguments does not apply in our problem; we are in a (2+1) dimensional space. Actually, 

Kalantarov et al [6] proved that, in a similar system the difference between the semi group 

generated by the dissipative system and the one generated by the corresponding 

conservative system is not compact. Let us mention that a similar problem in which 

Neumann boundary conditions is considered for the string was studied in details as in 

Farshbaf-Shaker et al [7]. Optimal Neumann boundary control of a vibrating string with 

uncertain initial data and probabilistic terminal constraints. From the mathematical point 

of view, this case is easier since it allows us to separate the variables and to obtain 

explicit information about the Eigen values and Eigen functions of the system. Issues 

related to the asymptotic behavior of a hybrid system with two types of vibrations of different 

nature were introduced in Hedrih [8] research papers. However, there are some important 

differences between these two models; Wu et al [9] highlights that a flexible damped beam 

instead of a flexible string occupies the flexible part of the boundary. Qin et al [10] showed 

that examples of absorption-based techniques are sound absorbing materials such as glass wool 

and foam and (coupled) tube resonators. Gao et al [3] suggested that sound can be reflected 

with single or double wall panels for instance as shielding for noisy machinery. Passive 

methods provide an adequate solution to many noise problems, but have the drawback that they 

tend to be more attractive for the higher frequencies (> 1000 Hz). At low frequencies, 

passive methods often lead to an unacceptable increase in mass and volume. In contrast to 

passive methods, active control methods rely on an external energy source. Active control 

systems can take many forms but such a system typically consists of sensors to detect a 

response, an electronic controller to suitably manipulate the sensor signals and actuators to 

influence the response. Wickman [11] found out that active control of noise is mainly suited 

for the low frequency range where passive methods are less attractive. The complimentary 

use of active and passive methods is thus an attractive solution to noise (or vibration) 

problems. The subject of this proposal is an active control method for reducing the noise 

produced by vibrating structures (automobiles). More precisely, the objective is to 

investigate the vibration of the structure in such a way that the sound radiation is 

minimized. From the review above, it can be inferred that studies on problem of the active 

control of noise generated in acoustic cavities by means of the vibrations of their flexible 

walls has received considerable attention using numerical methods. It appears that minimal 

work has been reported on investigation of stabilization and solution of mathematical noise 

control model of a (2+1) dimensional wave equation using Finite Difference Method. 

Introduction For this reason, we will address this problem for the model equation used 

(wave equation).  However, there exists a gap for further investigation of noise control 
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numerically with use of Finite Difference Method. 

 

 THE (2+1) DIMENSIONAL WAVE EQUATION WITH DAMPING 

PARAME TER 

The geometry of the problem shall be investigated using a (2+1) dimensional partial 

differential model Wave equation with damping parameter. The acoustic medium in the 

silencer plate is described by the partial differential wave equation in the variable u is as 

follows: 

2 2 2
2

2 2 2
( )i

u u u u
c d f w

tt x y

    
    

     

                                                                             (1) 

The two-dimensional partial differential wave equation with damping effect above is of order 

2, degree 1, where x and y are the spatial variables while t is a temporal variable of time. 

The solution u = (x, y, t) represents the silencer noise, u- dependent variable and (x, y, t) 

independent variables. The constant c2 denotes the speed of sound in the fluid (speed = 

340m/sec). The non-negative constants di represent damping coefficients (viscous damping                               

and boundary damping) with and f(w) representing weight function of the silencer plate. 

 

 FINITE DIFFERENCE METHOD 

Numerical solution of a mathematical equation gives approximate solution to the problem, 

for example, the unknown variable is solved at discrete points in space and time. The Finite 

Difference Method (FDM) basically involves replacing the partial derivatives occurring in 

the PDE as well as the boundary or initial conditions with their corresponding finite 

difference approximations  and then solving the resulting linear algebraic system of 

equations by the method of Forward in Time, Central in Space (FTCS). An iteration 

procedure has to be developed which considers the non- linear character of the equation. 

 

 DISCRETIZATION OF (2+1) DIMENSIONAL WAVE EQUATION 

The FTCS scheme in Equation is used to find the effects of varying weight function f(w) 

of the exhaust pipe in the noise reduction. Discretizing Equation (1) gives; 
1 1 1

, , , 1, , 1, , 1 , , 1 , ,
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2 2 2
( ) [ ( )]

( )( ) ( ) ( )
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   
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   
  

                                (2)    

Rearranging Equation (2) so that values of U at time n+1 are on the left, and values of U at 

time n are on the right and letting 
2 2

,
( ) ( )

t t
r

x y

 
 

 
 

1

t
 


 and x y   on a square mesh into 

(2) gives, 

1.125 ( )1 0.3125 0.3125 0.3125 0.3125
, ,1, 1, , 1 , 10.0625 0.0625 0.0625 0.0625 0.0625 0.0625

d f wn n n n n niU U U U U Ui j i ji j i j i j i jd d d d d di i i i i i


     

        
          (3) 

Thus, equation (3) is one equation in a system of equations for the values of U at the internal 

nodes of the spatial mesh i = 1,2,3,......N-1.We write equation (3) such that values of U from 

time step n+1 and time step nth appear on the left and right hand side respectively. Equation 

(3) is used to predict the values of U at time n+1, so all values of U at time n on right hand 

side are assumed to be known. We assume the sound energy produced is moving along x - axis. 

If i is varied as i = 1, 2, 3...10, and we fix n = 0 and j = 1 while we let ∆t = 0.0125, ∆x 
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= ∆y = 0.2, =⇒, µ = 0.0625, r = 0.3125 in Equation (4.2), then the systems of 10 linear 

algebraic equations obtained for FTCS scheme are, 
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(4) 

We take the interior node inside the mesh and along the x and y axes to be the known values 

as the initial and boundary conditions taken at t = 0, x = 0 and y = 0 respectively. At lower 

and upper boundary i.e the minimum and maximum values of length of silencer plates is 

assumed to be between x = 0 and x = 10 respectively while the width between silencer plates 

is assumed to be between y = 0 and y = 2 respectively in the study. Thus, this gives the 

following initial and boundary conditions for the weight function of the silencer plate used 

with known values on the right hand side of the algebraic equations (4). These conditions 

include; 

( , ,0) 1u x y   (5) 

     (0, , ) 0, (10, , ) 0,0 10u y t u y t x    , ( ,0, ) 0, ( , 2, ) 0,0 2u x t u x t y                                                       (6) 

Equations (5) and (6) are initial and boundary conditions respectively used in the set of the 

algebraic equations (4) for the known values on the right-hand side of the algebraic 

equations. The finite difference equations obtained at any space node, say, i at the time level 

nth left hand side has only three known coefficients involving space nodes at i, i-1 and i+1, 

and unknown at (n+1)th on the right hand side of the algebraic equations (4). In matrix 

notation, the 10 algebraic equations in (4) can be expressed in form of CU = D where U 

is the known vector of order 10 at any time level nth. D is the unknown vector of order 10 

which has the value of U at the (n+1)th time level and C is the coefficient square matrix of 

order 10 × 10, which is a tridiagonal structure. Then the 10 systems of equations in (4) can 

be written with 10 unknowns in matrix-vector form as; 
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 EFFECTS OF WEIGHT FUNCTION IN NOISE REDUCTION 

The effects of silencer plate- weight function in noise reduction in automobile engines is 

under studies. The damping parameter di is held constant and taken as di =8 in (7), we get 

the matrix equation shown in Equation (7) 
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 
 
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  (8) 

 The  s i l e nc e r  p l a t e  we igh t  f unc t ion  f(w) i s  varied with four different arbitrary 

values i.e f(w) = 10N, 20N, 30N, 40N in (8). With each value substituted at a time in (8), 

the matrix equation has been solved using MATLAB and a set of four different values of 

the noise intensity obtained as shown in table 1. 

Table 1: Effects of varying the Weight Function of the Silencer Plate on Noise Reduction  

X f(w) = 40N f(w) = 30N f(w) = 20N f(w) = 10N 

1 45.3504 23.7676 16.1076 12.1822 

2 2.2908 1.7607 1.3278 1.0564 

3 4.2521 2.2849 1.5663 1.1921 

4 4.1628 2.2724 1.5624 1.1905 

5 4.1628 2.2727 1.5625 1.1905 

6 4.1667 2.2727 1.5625 1.1905 

7 4.1666 2.2727 1.5625 1.1905 

8 4.1671 2.2727 1.5625 1.1905 

9 4.1580 2.2714 1.5621 1.1903 

10 4.3565 2.3269 1.5877 1.2050 
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Table 1 shows that at different values of x, the respective values of sound wave frequency have 

been obtained when weight functions f(w) is varied at f(w) = 10N, 20N, 30, and 40N. It is 

noted that sound wave particles flow at a higher kinetic energy at d i s t a n c e  n ea r  s o u r c e  

o f  s o u n d  and the intensity decrease a distance away from source of sound. This implies that 

collision of sound wave particles is higher at d i s t a n c e  of the                                                plates n ea r  s o u r ce  o f  

s o u n d  thus causing   high vibration. As the distance increases away from source of sound, 

kinetic energy decrease due to increased viscosity hence resulting to reduction of vibration of 

the particles. This means that vibration of particles decrease with decrease in weight function 

of the silencer plate. For instance, at x = 4 the values of sound wave frequency decrease from 

1.5624 to 1.1905 as weight function decrease from f(w) = 20N  to f(w) = 10N respectively. 

It is noted that sound wave frequency changes in the same way for other values of x. This 

result indicates that sound wave frequency at any value of x decreases with decrease in weight 

function of the silencer plate and vise versa. 

 

 

Fig 1: Graph of varied Weight Function f(w) of the Silencer Plate on noise reduction 

Figure 1 shows the resulting sound wave frequency at every respective point of the   varied 

Weight function; f(w) = 10N, f(w) =20N, f(w) = 30N and f(w) = 40N at constant damping 

parameter di = 8 of the silencer plate. It is seen that the  sound wave frequency at the 

source is12Hz for weight 10N, 15Hz for 20N, 16Hz for 30N and 17Hz for 40N respectively. 

It is clearly seen that the intensity of sound wave produced from the automobile engine is greatly 

influenced by the weight of the silencer plate (exhaust pipe). From the results, it is evident that 

the silencer plate should be made of a very  light material so as to help minimize the ultimate 

sound energy that is being emitted to the environment. For instance, the frequency of the sound 

wave has steadily risen with increase in the weight function of the silencer plate a n d  with 

the least weight resulting to l e a s t  sound wave frequency. 
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