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ABSTRACT 

        Brain tumors are among the most aggressive types of tumors and they are very hard to accurately segment due mainly 

to their contours, complexity and location. This paper presents a novel approach to these problems by proposing a new U-

shaped Convolutional Neural Networks (CNN) aimed at better integrating the morphology and anatomical structure of 

these brain tumor masses. Moreover, these target areas can include the whole tumor (WT), tumor core (TC), and tumor-

enhancing region (ET). In addition, the framework contains a new feature fusion module that automatically adjusts the 

importance of different MR modalities for the purpose of improving lesion specific feature extraction. Further a scale aware 

attention embedding is incorporated into the network to obtain global feature representations of the features at different 

scales. Based on the use of multi-modality images, this method is able to achieve an improved segmentation performance 

which will greatly enhance the analysis of tumor in the brain in medical imaging. 
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1.Introduction 

        Brain tumors are one of the most complex neoplasms facing mankind [1]. Their precise segmentation including vari-

ous subregions is important for making diagnosis and creating treatment strategies. Magnetic resonance imaging (MRI) 

scans, which cannot be compared in soft tissue contrast, have become a common technique for diagnosing a brain tumor 

[2]. Nonetheless, conventional methods of tumor diagnosis, like interpretation of medical images by a human specialist, are 

very labor and time-consuming and rely heavily on the skills of surgeons or radiologists. The problem of assessing the area 

and shape of the tumor is easily solved with the inclusion of computer vision and deep learning, as verification times will 

be less, thus providing a better and quicker tool for the doctors [3]. 

        In the recent time frame, convolutional neural networks (CNNs) have made inroads in the processing of medical im-

ages [4-5]. U-Net developed by Ronneberger et al [6]. Can be considered as the most notable one, as it utilizes an encoder-

decoder architecture to compress context features and apply pixel wise classification. The growing usage of U-Net in slice 

brain tumor segmentation has resulted in the formulation of some advanced variants of the net [7-9]. For instance, Zhang et 

al [11]. presented an attention gate residual U-Net, AGResUNet, several features that attain attention gating to exclude un-

desired features and focus more on tumor locations. Similarly, Jiang et al. proposed a novel approach called two level cas-

caded U-Net allowing for progressive segmentation from coarse to fine by a multi-stage structure aimed at refining the 

segmentation process. 

          But 3D U-Net (3DUNet) works well for the volumetric MRI but it has some huge drawbacks as well. To begin with, 

with a small receptive field, it becomes difficult to detect or model self-similarities in medical images regardless of the dis-

tance. Secondly, the use of flat or stiff Convolutional kernels limits the scaling ability of convolutional operations [12][13]. 

Transformers, A type of models that initially were made to work with human languages, were shown to be much more effi-
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cient because they solve every single drawback of the aforementioned networks. Doso-vitskiy et al. [15] were probably the 

first ones applying transformers in computer vision and proved them useful in such tasks [16-17]. 

         Notwithstanding the benefits they harness, there are certain challenges with the transformers approach in medical 

imaging. MRI is multi-modal and contains information about the tumor from a variety of perspectives. Different physicians 

focus on different modalities during the interpretation of specific lesions which implies that these modalities are of different 

importance for segmentation purposes. This is a phenomenon that most deep learning approaches ignore and instead, simp-

ly stack the modalities together irrespective of their importance. Such methods overlook the diversity of the features avail-

able in multiple modalities and hence the segmentation models become less effective. Also, though convolutional layers are 

highly capable of capturing local information, they do not have the ability to model global information. Transformers can 

be used to model global features but they are quite expensive due to the complexity of their architecture [18]. 

         In response to such issues, the study puts forth an updated model for a 3D MRI-based brain tumor segmentation. The 

segmentation of subregions as whole tumor (WT), tumor core (TC), and enhancing tumor (ET) is performed through a 

step-by-step approach within a multitask framework. Aiming to overcome this issue, the authors propose a feature fusion 

module that embeds and reorganizes effective integration features, including the interaction of components emphasizing 

dynamic learning. In addition, an integrated scale-aware attention mechanism is employed in the segmentation network to 

bridge various scales of representation while modeling information across the whole image. Such a combination of aspects 

addresses the drawbacks of the traditional CNNs and transformers making possible an accurate and rapid segmentation of 

gliomas. 

      The rest of the paper focuses on the following issues: the key elements concerning the proposed network architecture 

including feature fusion and the attention mechanism are presented in Section 2. In Section 3, the paper provides some ex-

perimental results including description of the datasets used, descriptions of evaluation metrics used, details of the ablation 

studies performed, and the achieved results in comparison with other state-of-the-art methods. Finally, Section 4 concludes 

the paper summarizing the findings addressed in the paper as well as suggested future works. 

2.Method 

2.1 Proposed Network Framework 

       The brain tumor segmentation model which is proposed to be fully automated 3D is built on a multi-branch 

architecture as explained in this paper. To begin with, a novel Multimodal Reorganization Module (MRM) is employed in 

each branch to dynamically assign a degree of significance to each modality and compensate for their unique deficits. This 

allows the segmentation of different lesion regions at various stages through more effective unification of multi modal data. 

The restructured feature maps are fed into the interspersed U-net (specifically SC-UNet) to produce the final results. The 

entire layout of proposed network structure is shown in Figure 1. 

 

Fig. 1. The framework of overall network. 

2.2 Multimodal Feature Reorganization Module 

        In order to capture more information and utilize the complementary features exhibited within multi modal MRI imag-

es, this paper proposes a multi modal feature reorganization module based on adaptive feature selection from SK-Net net-

work concept [19]. The detailed struc-ture of this module is illustrated in Figure 2. 
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Fig.2. The structure schematic of multimodal reorganization module.  

        The procedure starts with the feature extraction from the four MRI modalities using 3D convolutional layers with 16 

kernels of size three and ReLU activation. These features are then combined using element-wise summation to form an 

initial set of feature maps. The next step incorporates global context information by means of global average pooling to 

distill spatial dimensions into statistical features. In order to provide a more interactive and intuitive way of weighting each 

modality, the pooled features are sent to a fully connected layer, which melds them with a ReLU activation function creat-

ing feature representation vectors that yield modality-specific attention weights. These weights are then used to modulate 

the contribution of each modality by means of a spatial attention mechanism, which highlights relevant features for each 

task. 

        To obtain reorganized feature maps, the original modality features are fused with the modality adjusted features 

through summation. This re-organization handles the problem by treating the network to exploit complementary and shared 

information from different modalities while focusing on the critical lesion features. Incorporating the reorganized features 

into the segmentation network, the inserted module improves accuracy and stability of evaluation of the lesion segmenta-

tion resulting in good outcomes in different regions around the tumor.      

2.3 SC-UNet Split Network 

2.3.1 Encoders 

        The encoded image goes through an encoding circuit, which is designed to extract features from the input while mov-

ing from a low-level positional and contouring information into a more high-level semantic information. It has five encod-

ing blocks, of which first four have residual convolution modules and downsampling operations, while the fifth block has 

only a residual convolution module.    The basic architectural block comprises two 3×3×3 convolution layers from which 

each connects to the other via a residual connection, the two layers each has a stride which is set at one. The first layer of 

the convolution uses 32 kernels and with each down sampling the number of kernels is doubled. IN, together with a Leaky 

ReLU activation function, follows each convolution operation to ensure such stability together with provisions for non-

linearity. A 3×3×3 convolution operation with a stride of 2 is used to reach any desired level of downsampled images and 

after all five encoder layers have been the feature map size attained is 1/32 of the image dimension set at the input level to 

ensure compact images whilst preserving the information. 

2.3.2Decoders 

To put it more simply, the decoder takes the feature maps and makes them clearer by turning the low representations 
into high. Every single decoding block has an up-sampling module and a convolutional structure. The convolution 
module is very simple, as can be seen in Figure 4(b), two 3×3×3 convolution layers with a stride of 1 
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Fig.4. The structure schematics of (a) residual convolution module, and (b) convolution 

        So as to be consistent with the encoder, instance normalization and Leaky ReLU are performed behind every 
convolution layer. As for the spatial resolution, the up-sampling module has a 2×2×2 transposed convolution layer 
with a stride of 2, the up-sampling module enables spatial resolution to be restored. To get the final desired high-
resolution outputs, the decoder goes through four up sampling stages in which the feature maps are taken and evalu-
ated. The last convolutional with dimensions of 1×1×1 and a stride of 1 is the segmentation layer that determines the 
output probability map of the model. These maps are fed into an activation layer which finally produces a dilation of 
the end-to-end output and provides the vertices of the tumor regions. 

2.3.3 Scaled Cross-Attention Module 

        In a typical setup of U-Net, skip connections carry the features extracted by the encoder and passed them directly to 

the decoder, reducing the amount of low-level feature information that might otherwise be lost during the information flow. 

However, such connections do not enhance the features interactions at varying resolutions. To resolve this limitation, a 

Scaled Cross-Attention (SC) module is incorporated in this work. This module is supposed to ensure a full range of multi-

scale feature fusion while enjoying the global modeling ability of transformer architectures. The fusion of multi-scale fea-

tures is performed using the transformer model which is known for its sequential processing of one sequence to another. 

This is done by turning the feature maps of several resolutions into sequences of one dimension. These sequences are 

joined so that the self-attention mechanism may capture the dependencies among the scales. This way, the SC module im-

proves the communication of features on the different scales which in turn enhances the representation of semantic infor-

mation in terms of the degree of the generalization attained. 

2.3.4 Feature Extraction and Transformer-Based Global Interaction 

         The features extracted from the encoder are represented in a tensor FF of dimension C×H×W×D, where C is the num-

ber of channels, and H, W, and D are the spatial dimensions. To adapt these features for transformer input, the multi-scale 

feature maps F1, F2 and F3 are divided into N blocks, each of size 4×4×4. Let Pi denote the i-th block in the feature map. 

Each block Pi is linearly projected using a matrix 𝑊𝐿 and flattened into a one-dimensional vector: 

𝑆𝑖=Flatten (𝑊𝐿⋅Pi), i∈ {1, 2…….N}         (1) 

The patch sequences from all scales are concatenated to form the complete patch sequence S: 

S= [𝑆1; 𝑆2;… ;𝑆𝑁]           (2) 

The sequence dimension D is set to 32 in this study. Since SS lacks positional information, a learnable positional encoding 

P is added to each element: 

S′=S+P             (3) 

where P∈𝑅𝑁×𝐷 is the positional encoding. This augmented sequence S′ serves as the input to the transformer modules. 

2.3.5 Transformer Module Structure 

        The input sequence S' is processed through three transformer modules, each consisting of multi-head self-attention 

(MSA) and a feedforward neural network (FFN). For the input sequence S', queries (Q), keys (K), and values (V) are com-

puted using learnable linear projection matrices 𝑊𝑄,𝑊𝐾,𝑊𝑉 and  

Q=𝑊𝑄⋅S′, K=𝑊𝐾⋅S′, V=𝑊𝑉 ⋅S′          (4) 

The self-attention score matrix SA is computed as: 

SA=Softmax (
𝑄.𝐾𝑇

√𝑑𝑘
 )           (5) 

where 𝑑𝑘 is the dimension of the key vectors, the output of the multi-head attention mechanism for each head can be given 

by, 

𝑂ℎ=SA⋅V            (6) 
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and the outputs from all heads are concatenated and linearly transformed: 

O=𝑊𝑜 ⋅ [O1; O2;…….;Oh].          (7) 

The attention output is added to the input sequence via a residual connection, followed by layer normalization: 

𝑆𝑎𝑡𝑡= LayerNorm(S′+O)           (8) 

The FFN, consisting of two fully connected layers and a ReLU activation, refines the representation: 

FFN (𝑆𝑎𝑡𝑡) = W2⋅ReLU(W1⋅𝑆𝑎𝑡𝑡)          (9) 

The final output of the transformer module is: 

𝑆𝑜𝑢𝑡=LayerNorm (Satt+FFN (𝑆𝑎𝑡𝑡))          (10) 

2.3.6 Reconstruction and Integration 

       The output sequence 𝑆𝑜𝑢𝑡 is divided back into its original scales and converted to feature maps using an inverse linear 

projection 𝑊𝐿
−1 

 𝐹𝑟=Reshape (𝑊𝐿
−1⋅𝑆𝑜𝑢𝑡)            (11) 

The reconstructed feature 𝐹𝑟 maps are passed to the decoder through skip connections, ensuring effective integration of 

global and multi-scale features for precise segmentation.   

3. EXPERIMENTAL RESULTS AND ANALYSIS 

To verify the effectiveness of the proposed algorithm for brain tumor segmentation, a series of comparative ex-
periments are designed in this paper. 

3.1 EXPERIMENTAL SETUP 

        For the training and testing of the proposed model in this work, the BraTS 2023 [] public dataset was used. This da-

taset consists of MRI scans of 1251 patients diagnosed with gliomas and includes low-grade gliomas (LGG) and high-grade 

gliomas (HGG). Each case includes preoperative MR images in four different modalities: T1-weighted (T1), T1- contrast 

enhanced (T1ce), T2-weighted (T2) and T2 fluid-attenuated inversion recovery (FLAIR) and also includes tumor segmenta-

tion maps labeled by qualified experts. An example of the patient’s image data is shown in Fig.6. 
 

 

Fig.6. Four modal MRI images and physician-labeled brain tumor image (Ground Truth) of a patient. 

       The network model was developed using PyTorch deep learning framework with Python version 3.9 and the calcula-

tions were made on NVIDIA GeForce RTX 4090 GPU. The BraTS 2023 dataset was divided into training and testing da-

tasets with a ratio of 85:15. The input image blocks were scaled down to the size of 128×128×128 voxels. The model was 

tuned in accordance with the Adam optimizer with the initial rate of 0.0001, weight decay rate of 0.00001 and 50% dropout 

of 0.5. The loss function was specified and encapsulated within the regularization term of 0.000001. A batch size of 2 was 

specified and the maximum number of training epochs was set to 300. The training process included the early stopping 

method for the purpose of model overfitting and performance enhancement. 

3.2 Evaluation Metrics 

        The segmentation algorithm identifies and labels the WT, TC, and ET regions from patients’ multimodal MRI images. 

These regions are hierarchically nested in a structure such that the WT includes the TC and the TC includes the ET. To 

measure the performance of the model’s segmentation, three metrics are used: the Dice coefficient, sensitivity and 95% 

Hausdorff distance. Out of these, the Dice coefficient is foremost among all.   The amount of overlap, as determinants of 

tumor segmentation adequacy, between tumors predicted and the tumors labeled on actual images is the role the Dice coef-

ficient serves. On the other hand, the 95% Hausdorff distance analyzes the effectiveness of the segmentation more so at the 

boundaries of a tumor by estimating how much these boundaries predicted are in regard to the actual boundaries. Accord-

ing to sensitivity, which is sometimes referred to as re-call, it determines the portions of tumor regions which were correct-

ly recognized by the model, signifying the effectiveness of the loss function used in the segmentation task 

Dice Coefficient (DC) = 
2⃒𝑃∩𝐺⃒

⃒𝑃⃒+⃒𝐺⃒
          (12) 
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      where P is the region of the lesion predicted by the model, and G is the ground truth lesion region. The symbol ∩ 
denotes the logical "and" operation, indicating the overlapping region between P and G. The Dice Coefficient evalu-
ates the degree of overlap between the predicted and actual regions, serving as the primary measure of segmentation 
accuracy. 

Sensitivity (Recall) = 
⃒𝑃∩𝐺⃒

⃒𝐺⃒
          (13) 

where ∣G∣ represents the size of the ground truth lesion region. Sensitivity measures the proportion of the ground 
truth region correctly identified by the model, reflecting its ability to detect tumor regions comprehensively. 

HD95 (X, Y) = max {P95 (supx ε X  inf y ε Y d (x, y)), P95 (sup y ε Y  infx ε X d (x, y) ) }     (14) 

       where X=∂P and Y=∂G are the boundaries of the predicted and ground truth lesion regions, respectively. The function 

d (x, y) computes the Euclidean distance between a point x∈X and a point y∈Y. The term P95 refers to the 95th percentile 

of the distance values, which reduces the influence of outliers. HD95 evaluates the precision of the model in delineating 

tumor boundaries, providing insight into the alignment of the predicted and actual tumor contours. 

       These metrics collectively assess segmentation quality from multiple perspectives: overlap (DC), detection (Sensitivi-

ty), and boundary alignment (HD95). Together, they provide a robust evaluation framework for the model's performance in 

segmenting brain tumor regions. 

3.3 Ablation Experiments 
To elucidate the feasibility of the design frameworks in the suggested approach, an ablation study is carried out 

on the 3DUNet baseline model by including the multimodal feature reorganization module and the scale cross-

attention module. The detailed results are laid out in Table 1.  

Table 1: Ablation Experiments Results 

Models Mean Dice (%) Mean Sensitivity (%) Mean Hausdorff (mm) 

WT TC ET WT TC ET WT TC ET 

UNet(base) 89.79 85.13 80.90 94.08 85.46 80.77 13.61 17.47 6.45 

UNet+MR 89.89 86.45 85.71 92.16 86.45 87.13 10.26 15.48 7.14 

UNet+SC 90.11 87.56 86.49 93.97 87.16 88.93 12.47 11.08 5.93 

Proposed 90.95 87.46 84.98 95.42 91.82 87.48 9.43 10.34 4.53 

        It can be observed from the table that replacing the 3D U-Net model with tumors located multi organ 3D instance 

segmentation model significantly improves gineering ‘methods in motivating’ segmentation performance for every elevator 

panel region. This enhancement is due to the reason that the multi-modality information is combined within the module 

through adapting modality weights according to the relevance. Particularly, there is an increase of 4.81% in the Dice score 

for the Enlargement averaging procedure (ET) region. This shows that the module performs well in identifying features 

pertaining to specific models and is quite useful for segmentation tasks which are quite difficult.  

        When the Scaled Cross-Attention (SC) module is integrated into the network, even better results are obtained in the 

validation dataset. Enhanced boundary delineation of lesions, increased sensitivity and Dice scores all result from the SC 

module which combined multi-scale features and enlarge the receptive field. For example, in regards to the Tumor Core 

(TC) and ET regions both sensitivity and Dice scores have correspondingly increased, while the Hausdorff distance has 

decreased showing improved boundary accuracy. 

          It is clear from the results that the MR and SC modules improve both weaknesses of the individual systems and 

therefore, the complete system performs the best. In this regard, the proposed MR and SC modules, while capable of work-

ing independently, do considerably improve specific aspects of the segmentation performance when employed in conjunc-

tion, thus boosting the overall efficacy of the system. For instance, the Dice scores for WT, TC, and ET grow to reach 

90.95%, 87.46%, and 84.98%, respectively. More important is the significant drop in the Hausdorff distance for all regions 

with the maximum distance across all regions to the boundary of Enhancing Tumour (ET), dropping to 4.53 mm. At each 

motif level, detailed analyses confirm that the deployment of each module in the case of augmenting MR and SC modules 

into the segmentation neural network did yield improvement on models in terms of accuracy as well as robustness towards 

uncertainty, as a result of them being complementary. 

 

3.4 Comparative Experimental Results  

       To validate the effectiveness of the proposed algorithm, we compare it with six state-of-the-art CNN methods: 3D U-
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Net, Attention U-Net [20], U-Net++ [21], ET-Net [22], Point-UNet [23], and TransBTS [24]. All models were evaluated 

under the same data preprocessing conditions and hyperparameter tuning for fair comparison. The experimental results are 

presented in Table 2. 

Table 2: Comparative Segemenetation Results Across Model 

Models Mean Dice (%) Mean Sensitivity (%) Mean Hausdorff (mm) 

WT TC ET WT TC ET WT TC ET 

3DUNet 89.79 85.13 80.90 94.08 87.46 80.77 13.61 17.47 6.45 

AttentionUNet 88.98 82.36 81.23 91.45 86.45 76.57 14.12 11.17 8.53 

UNet++ 90.17 84.06 79.55 94.23 85.77 80.41 10.21 19.72 7.78 

ET-Net 90.08 86.39 84.73 92.54 89.46 86.15 11.57 15.49 5.19 

Point-UNet 89.61 87.07 86.42 91.61 87.94 87.18 10.16 17.13 8.75 

TransBTS 90.15 86.43 86.47 92.41 94.92 86.39 16.57 14.16 6.65 

Proposed 90.95 87.46 84.98 95.42 91.87 87.48 9.43 10.34 4.53 

        Apart from the considered metrics, the quantitative evaluation input detailed in the previous section is re-stated in Ta-

ble II as the criteria for the segmentations very similar to the Sistine Chapel Model, but the major difference is that seg-

ments are also defined for all images led to unprecedented performance in all tasks. The average Dice values, for the whole 

tumor, tumor core and enhancing the tumor segments come off as respectively. This indicates that the Multimodal Feature 

Reorganization (MR) module succeeded in enhancing the network’s capacity of assigning weights for various regions and 

enabled robust segmentation of WT as well as TC and ET, particularly the latter in the round. Additionally, ET inaccuracy 

values were 1.16%, 2.33%, and 4.08% in contraction UP models off the baseline 3D U-Net model along with WT, TC re-

spectively. 

        The Scale Cross Attention (SC) module improves the model in terms of feature fusion across scales thus boosting the 

quality of the features represented in it multiscale feature networks. The developed architecture achieved the highest struc-

tural similarity scores and the lowest Hausdorff distances (9.43 mm for WT, 10.34 mm for TC, and 4.53 mm for ET) as 

well as very high sensitivity scores (95.42% for WT, 91.87% for TC, and 87.48% for ET). This indicates higher accuracy 

of segmentation and precision of the boundaries. The results clearly demonstrate that the proposed algorithm consistently 

ranks better than the rest algorithms across the complexity spectrum especially in segmentation tasks that are quite compli-

cated. 

        The results of Figures 7 depict the segmentation results of tumor located in the brain using 3D U-Net, TransBTS and 

the proposed approach. It could be observed from the figures that the contours produced by the proposed model are more 

refined and precise, making good use of the multimodal MRI and correctly identifying the tumor tissues. The network 

eliminates false-positive areas by fusing multi-scale features and extending receptive areas, resulting in an output that 

closely matches the expected outcomes. 

 

Fig.7. 2D segmentation results of different models. 
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4. Conclusion 

        The paper develops an enhanced model for segmenting brain tumors by embedding the Multimodal Feature Reorgani-

zation (MR) module and the Scale Cross-Attention (SC) module into the 3D U-Net architecture. The MR module allows 

for adaptive weighting of different MRI modalities making the extraction of features related to tumor subregions more ef-

fective. The SC module improves model’s ability to incorporate multi-scale information and increases the receptive field 

thereby enhancing the accuracy of the segmentation and the boundaries’ definition. The Dice scores, sensitivity and 

Hausdorff distances obtained in segmenting the Whole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET) regions 

reveal the superiority of the proposed approach over state-of-the-art methods particularly when subjected to extensive ex-

periments on the BraTS 2023 dataset. The results further indicate the robustness of the model with respect to complex, hi-

erarchical segmentation tasks and the occurrence of false positive results is significantly reduced.  
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