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Abstract 

Traditional fish farming faces several significant challenges, including water contamination, temperature 

imbalances, feed management, limited land availability, and high costs. The aquaculture industry continues to face 

various challenges, including the need for enhanced monitoring systems, early identification of disease outbreaks, 

high mortality rates, and the promotion of sustainability. These issues represent ongoing concerns that require 

resolution and have prompted this study to conduct research on fish pond water quality management using the 

Woosong University fish pond dataset sourced from the Kaggle machine learning repository. The objective of this 

research is to develop an aquaculture solution utilizing machine learning (ML) techniques, with the aim of 

enhancing prawn growth and increasing productivity in pond environments. Hence, the study scrutinizes the 

effectiveness of some machine learning algorithms, including XGBoost, Gradient Boosting, K-Neighbors Regressor, 

Random Forest Regressor, and a Hybrid Ensemble Model. Evaluation metrics using some evaluation metrics such as 

Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), R-squared (R2), and Root Mean Squared 

Error (RMSE) to assess the algorithms' effectiveness. The study's findings revealed that the Random Forest 

Regressor and the Hybrid Ensemble Model outperform other algorithms in terms of prediction accuracy, making 

them strong candidates for assessing water quality in fish farming. 

Key-Words: XGB Boost (XGBOOST), Gradient Boosting (GB), K-Neighbors Regressor (KNN), Random Forest 

(RF) 

1.0 Introduction 

Fish farming, also known as aquaculture, has emerged as a critical solution to meet the escalating demand for 

seafood in a world where marine waters, both coastal and open ocean, are being harnessed to grow food (Zambrano 

et al., 2021). This innovation-driven technology has not only fulfilled the global appetite for seafood but has also 

positioned itself as the future's primary method of aquatic food production. 

However, the expansion of aquaculture has brought about a range of challenges and concerns. Aquaculture's impact 

on biodiversity, resource utilization (including land and water), emissions, and the introduction of various agents 

into the environment has raised important ecological questions (Yilmaz et al., 2023). Greenhouse gases, leftover 

food waste, excrement, urine, chemotherapeutic medications, bacteria, parasites, and stray animals all fall into this 

category. Moreover, the transfer of eutrophicating agents, harmful chemicals, infections, diseases, and genetic 

material into ecosystems has raised alarms regarding its effects on wild populations and ecosystems (Feng et al., 

2019). These concerns extend to indirect consequences, such as habitat loss, changes in niche spaces, and 

disruptions in food webs. 

Nonetheless, aquaculture offers a multifaceted approach. It not only serves as a means of food production but also as 

a tool for ecosystem restoration, stock replenishment, and the conservation of threatened and endangered species 

(Kaur et al., 2023). This is especially evident in the distinction between marine and freshwater aquaculture, with a 

focus on the marine environment and estuarine creatures. 

Fish farming has not only impacted the seafood industry but has also provided opportunities for current and former 

fishermen to complement their traditional fishing activities. For instance, farmed seafood products now contribute 
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significantly to the seafood market, alleviating the United States' seafood deficit and providing a domestic source of 

economically and ecologically sustainable seafood (Abaidoo et al., 2021).  

As aquaculture continues to evolve and diversify, it stands as a distinct agricultural sector characterized by its 

unique challenges, innovations, and contributions to global food security (Gladju et al., 2022). It is a sector where 

scientific and technological advancements have played a pivotal role in enhancing production, improving feed 

conversion rates, managing diseases, and expanding species diversity. 

In the pursuit of securing wholesome food sources and thus reducing poverty among coastal and rural communities, 

both fishing and aquaculture have pivotal roles to play (Rahman et al., 2021). While aquaculture encompasses 

various aspects of marine life, fisheries primarily deal with the capture of wild fish or the breeding and harvesting of 

fish. This fundamental distinction highlights the crucial role of aquaculture in sustaining food security and economic 

stability.  Aquaculture's profound impact on protein production cannot be overstated (Rahman et al., 2021). It has 

become one of the fastest-growing agricultural sectors, surpassing wild fisheries production in recent years. This 

remarkable growth has been made possible through continuous research, technological advancements, and 

improvements in every facet of aquaculture. Scientific discoveries and technological innovations have led to better 

feed formulations, reduced disease outbreaks, and increased efficiency in aquaculture operations. However, the 

growing demand for seafood necessitates further expansion and innovation in aquaculture to meet the world's ever-

increasing seafood needs. 

Recently, fish farming or aquaculture, has witnessed significant advancements driven by artificial intelligence (AI) 

and machine learning (ML) technologies (Hu et al., 2022). These innovations have shown their potential to 

revolutionize fish farming practices, leading to improved efficiency, sustainability, and productivity (Kaur et al., 

2023). One of the critical applications of machine learning is in Water Quality Management, analyzing and 

monitoring water quality parameters including pH levels, temperature, oxygen levels, and turbidity (Islam et al., 

2023); fish health monitoring, targeted at recognizing subtle changes in fish behaviour and appearance that may 

indicate health issues (Yilmaz et al., 2023); feed optimization, meant to optimize feed formulation by analyzing data 

on fish growth rates, feeding schedules, and environmental conditions (Du et al., 2023); and lastly, environmental 

impact assessment, targeted at trailing problems regarding waste disposal and habitat alterations. 

Hence, in the realm of water quality assessment, this study proposed the application of some ensemble machine 

learning algorithms including XGBoost, GB, KNN, and RF on the fish pond dataset sourced from the Kaggle 

machine learning repository. 

A major contribution of this research is the integration of ensemble algorithms, harnessing their collective strengths 

to formulate a robust model for the evaluation of water quality in fish ponds. 

2.0 Related Works 

Xiao et al., (2017) used a BP neural network with various activation functions to create machine learning and deep 

learning models for predicting dissolved oxygen levels in aquaculture systems. They employed 10 days of breeding 

data from three ponds in Beihai, Guangxi, China, for their study. The first week was dedicated to instruction, and the 

final three were reserved for examinations. With 5000 iterations, a learning rate of 0.01 and a goal value of 

0.00000001, the neural network outperformed other standard prediction models such as curve fitting, autoregression, 

grey model, and support vector machines. All of the anticipated values were within a 5% range, which is acceptable 

for most uses. When compared to AR, GM, SVM, and CF, the neural network provided the most accurate 

predictions. 

The purpose of  Stocker et al., (2022)  study was to examine the potential for forecasting the amounts of Escherichia 

coli in agricultural pond waters. Over three years, the researchers monitored two ponds in Maryland during the 

irrigation season. The obtained water samples were analyzed for the presence of E. coli and another 12 indicators of 

water quality. Stochastic gradient boosting (SGB) machines, random forests (RF), support vector machines (SVM), 

and k-nearest neighbour (kNN) approaches were used to make predictions about E. coli based on the available 

datasets. The RMSE for predicting E. coli concentrations in both ponds using the RF model was the smallest in the 

majority of cases, both within individual years and between subsequent years. The calculated E. coli concentrations 

GSJ: Volume 12, Issue 5, May 2024 
ISSN 2320-9186 1554

GSJ© 2024 
www.globalscientificjournal.com



(log10 CFU 100 ml1) had root mean square error (RMSE) values between 0.244 and 0.346 for Pond 1 and between 

0.304 and 0.418 for Pond 2 over the years. Three-year data sets showed values of 0.334 for Pond 1 and 0.381 for 

Pond 2. The root mean square error (RMSE) values attained by the random forest (RF) model and those generated 

by other machine learning (ML) models did not differ statistically significantly (P > 0.05) in the vast majority of 

situations. The RMSE values produced from five iterations of a 10-fold cross-validation technique served as the 

statistical measurements for this comparison. Turbidity, dissolved organic matter content, specific conductance, 

chlorophyll concentration, and temperature were all found to be significant predictors of E. coli. Using 5 predictors 

yielded the same predictive performance as using 8 or 12 predictors in the model. This indicates that the predicted 

accuracy of the evaluated algorithms does not noticeably improve when new predictors are included, despite the fact 

that doing so requires more work and resources. 

Improved water quality parameter data was used to create a novel aquaculture prediction model, which was 

presented in (Jiang and Yan, 2022). Using principal component analysis, the author looked at the complex 

relationship between dissolved oxygen and water quality. As a result, the author proposed a PCA-BP (principal 

component analysis backpropagation) model for predicting water quality. The PCA-BP water quality prediction 

model's weight and threshold parameters were optimised using a genetic algorithm. An improved PCA-BP water 

quality prediction model was developed after the threshold and weight of the BP neural network were determined. 

According to the results of several controlled experiments, the GPCA-BP model can forecast the dissolved oxygen 

concentration with a relative error of less than 0.76 per cent over a range of temporal and spatial water quality 

prediction trials. Additionally, the model's prediction accuracy is higher than that of competing models. 

Convergence accuracy, prediction accuracy, and the mean absolute error in performance (MAE) are all areas in 

which the GPCA-BP water quality prediction model excels. 

Nyumba ya Mungu Dam's fishing potential has dropped by 95% between 1972 and 2018, therefore researchers 

(Mangi et al., 2023) looked into the link between water quality and fish productivity to figure out why. Using 

standard procedures, we analysed the temperature, pH, dissolved oxygen (DO), turbidity, total nitrogen, total 

phosphorus, chlorophyll, and depth of the water at the fishing net location. Over a year, from January to December 

of this year, fish biomass/productivity was analysed by looking at catches per unit of effort. Pearson's correlation 

analysis showed a significant positive relationship between turbidity (r = 0.461, p 0.01) and TP (r = 0.405, p 0.01) 

and fish catch per unit effort. The results of the stepwise multiple regression model indicated that turbidity, 

dissolved oxygen, and the depth at which the fishing net was placed were statistically significant predictors of fish 

catch per unit effort. Fish catch per unit effort was also shown to be modified by 24% once turbidity and dissolved 

oxygen were incorporated into the model. There was a 28.9% difference in fish catch per unit effort, but that was 

only after factoring in turbidity, dissolved oxygen, and the depth of the fishing net site.  

3.0 Methodology  

A three-phase methodological approach was utilized in the development of pond machine learning models. In the 

initial stage, the dataset was accessed using the Panda's library. This library provides a range of methods for reading 

datasets in various file formats, such as comma-separated values (CSV), which is the format employed in the dataset 

utilized for this study. The second phase of the study emphasized data preprocessing, encompassing many activities 

like the elimination of extraneous features, standardization, and encoding of the dataset's attributes. The final step of 

our methodology consisted of inputting the processed features, which were filtered, scaled, and encoded, into the 

designated machine learning algorithms, namely K-Nearest Neighbors (KNN), XGBoost, Random Forest, and 

Gradient Boosting. Before inputting the data, we partitioned the dataset into a training set comprising 70% of the 

data and a test set including the remaining 30%. The training dataset was employed to train the machine learning 

models, whereas the test dataset was utilized to assess the models' correctness. During the third phase, some 

performance evaluation metrics were implemented to ascertain the models that exhibited superior performance. 

Figure 1 depicts the sequential methodological approach as previously explained. 
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Figure 1: Methodological Framework  

 

3.1 Dataset Description 

The dataset utilized is the Woosong University fish pond dataset. Islam et al., (2021) acquired the dataset in real 

time by utilizing a specifically constructed Internet of Things (IoT) framework for monitoring aquatic environments. 

This framework involved the use of an Arduino and sensors. During the process of data collecting, the researchers 

employed three distinct sensors, namely pH, temperature, and turbidity sensors, to monitor and assess the water 

quality of a total of five ponds. The dataset consists of 591 rows and 4 columns. The factors under consideration 

include pH, temperature, turbidity, and the presence of fish. The target variable in this study is fish, whereas the 

remaining variables are considered independent variables. There exists a total of 11 separate fish classifications, 86 

distinct values for pH, 46 distinct values for temperature, and 85 distinct values for Turbidity. 

3.2 Data Normalization  
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To enhance the efficacy of a proposed machine learning regression model, the introduction of the normalization 

technique was suggested. The objective of normalization in this context is to standardize the values of numerical 

columns within the dataset while preserving the relative disparities in the ranges of values. This objective is 

accomplished by normalizing each feature variable, denoted as Vij, to the interval (0, 1). 

              

                   
        

3.3 Gradient Boosting 

Gradient boosting regression tree algorithms utilize an ensemble learning technique to create robust predictive 

models (Singh et al., 2021). They achieve this by combining multiple individual regression trees, which are often 

considered weak learners. These weak learners are characterized by having high bias, low variance, and limited 

performance on their own. The primary goal of the algorithm is to reduce the errors made by these weak models, 

improving their predictive power. Boosting algorithms typically consist of three key components: an additive model, 

the weak learners, and a loss function. This algorithm can effectively capture nonlinear relationships in data, making 

it suitable for tasks like modelling wind power curves. It employs various differentiable loss functions and 

continually learns during the iterative process, adjusting its predictions based on input features. Gradient boosting 

machines (GBM) work by recognizing the weaknesses of these weak models through gradient information. This is 

achieved through an iterative process where the algorithm aims to combine base learners to minimize prediction 

errors. Decision trees are integrated into the model in an additive manner, and the loss function is reduced using 

gradient descent, allowing the algorithm to progressively improve its predictions. The GBT (gradient boosting tree) 

       can be defined as the summation of n regression trees. 

       ∑      

 

   

  2 

Where every        is a decision tree. The ensemble of a tree is constructed sequentially by estimating the new 

decision tree          with the help of the following equation: 

      ∑ (                  )    

 

 

Where    Is differentiable for loss-function     . The optimization is solved by the steepest descent method. 

3.4 K-Nearest Neighbors (KNN) 

The KNN regression model is a straightforward approach that relies on the similarity between data points to make 

predictions for new observations (Sumayli, 2023). When using KNN regression, the model determines how far off a 

new observation is from each of the data points in the training dataset. Euclidean distance, the most widely used 

distance measure, is determined using the equation. 

 (     )  √∑          
 

 

   

   4 

Input feature count is denoted by  , and the value of feature   for observation   is denoted by    , and feature   for 

observation 𝑗 is denoted by    . The KNN method takes the estimated distances and chooses the k closest 

neighbours. Next, we use the average (or median) of the values of the target variable among these K nearest 

neighbours to get a prediction for the new observation. The ease with which KNN regression can be understood is 

one of its primary benefits. However, finding an appropriate number for   is essential, as doing so may lead to either 

over-fitting or under-fitting if the value is too little or too big. The choice of 5 neighbours reflects this. 

3.5 XGBoost 
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XGBoost regression, a term denoting extreme gradient boost regression, represents an iterative decision tree 

algorithm with the primary objective of enhancing model performance through the utilization of residuals (Huang et 

al., 2022). This algorithm boasts several key attributes such as its support for parallel computing, enabling the 

simultaneous utilization of all available computer cores. This parallel processing capability significantly enhances 

the algorithm's efficiency, making it well-suited for tasks requiring rapid model development and evaluation. 

Moreover, XGBoost incorporates internal regularization techniques, a critical feature that helps prevent overfitting. 

Imposing constraints on the model during training ensures that the resulting model maintains robustness and 

generalizability, even when dealing with complex datasets. XGBoost also has built-in cross-validation and missing 

value-handling mechanisms. These features simplify the model validation process and facilitate the management of 

missing data, streamlining the overall workflow of model development. To achieve all these, XGBoost uses a loss 

function mathematically defined as follows: 

  ∑𝑙(    ̂ 
  −  

       )            

 

   

 

Then, Taylor’s second-order expansion of the objective function is performed: 

  ∑𝑙 (    ̂ 
  −  

           
 

2
    

     )            

 

   

 

Finally, the evaluation function of the tree structure is obtained. The smaller the value is, the smaller the error is: 

    
 

2
∑

  
 

    
         

 

   

 

3.6 Random Forest 

In ensemble learning, the RF regression algorithm pools data from several different regression trees. An informal 

definition of a regression tree in this setting is "a set of conditions or rules organized hierarchically and applied 

systematically from the root to the leaves" (Zhou, 2016). Multiple bootstrap samples, which are subsets picked at 

random with replacements from the original training dataset, are generated to begin the RF procedure. A regression 

tree is built for each of these bootstrap samples individually. During the process of building each tree, a random 

subset of the total set of input variables is selected and used to create binary divisions at each node. Selecting the 

input variable with the smallest Gini Index serves as the condition for splitting the regression tree.  

  (      
)    ∑        

 𝑗     8

 

   

 

where         
 𝑗   represents the fraction of samples where    is a value from branch j of node t. An observation's 

projected value is obtained by taking the mean across all trees. The number of regression trees (ntree; default value 

is 500 trees) and the number of input variables per node (mtry; default value is 1/3 of the total number of variables) 

are the two parameters that need to be optimised in the RF. 

3.7 Hybridization Approach 

Stacking refers to an ensemble technique wherein a meta-learner algorithm is used with one or more base-level 

classifiers. The initial dataset serves as the input for multiple separate models in the stacking technique. The 

metaclassifier is subsequently employed to assess the input, output, and weights of each model. The models that 

demonstrate superior performance are selected, and the remaining models are excluded. The stacking technique 

utilizes a metaclassifier to combine many basic classifiers that have been trained using distinct learning methods on 

a unified dataset. The model's predictions are combined with the inputs from each subsequent layer to produce a 

fresh set of predictions. 
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3.8 Evaluation metrics  

The performance of the model was evaluated using the below indicators: 

Mean Square Error (MSE): serves as a metric for evaluating the proximity of a regression line to the adapted 

dataset. It essentially represents a measure of risk, corresponding to the anticipated value of the squared error loss. 

To compute the MSE, one takes the average, or mean, of the squared errors between the data points and a related 

function. A higher MSE signifies that the data points are widely spread around their central point (mean), while a 

lower MSE indicates the opposite. A smaller MSE is preferable, as it suggests that the data points are closely 

clustered around their central mean.  

     
 

 
∑                 

 

   

 

Root Mean Squared Error (MSE): It is the average of the squared difference between the predicted and actual 

value. 

𝑅     √
∑    

𝑓
   

𝑜𝑏   
   

 
     0 

Where   
𝑓
 is the   ℎ forecasted data,   

𝑜𝑏  is the   ℎ observed data, and n is the amount of data. 

MAPE (Mean Absolute Percentage Error):  provides a metric for assessing the typical deviation from a predicted 

value to the actual value. Simply said, it provides a numerical value for the typical percentage by which a model's 

predictions differ from the true values. 

 𝐴𝑃  
 

 
 ∑

|𝑜    |

|𝑜 |
  00     

Where n indicates the sample size, 𝑜  indicates the actual data value,    indicates the forecasted data value 

R
2
-Score: When examining the efficacy of a machine learning model that uses regression, the R2 score is crucial. It 

measures how well the model's predictions account for the diversity in a given dataset. It's a way to evaluate how far 

the model's predictions deviate from the observed data. 

𝑅   
∑  ̂    ̅ 

 

∑      ̅ 
 
    2 

4.0 Experimental setup  

In this investigation, we used a 64-bit Windows OS on a computer with an Intel(R) Corel Trade Mark (TM) i5-

2560QM CPU @2.40GHZ and 8.00 GB of RAM (Random Access Memory) to conduct experiments and make 

predictions on pond water quality. The Anaconda environment with the Python 3.11 software development kit was 

used to put the program code into action. Sklearn, Pandas, Matplotlib, Seaborn, and NumPy were used as their 

respective application programming interfaces. 

4.1  Result Presentation 

Table 1 presents a comparative analysis of different machine learning algorithms, including XGB Boost, Gradient 

Boosting, K-Neighbors Regressor, Random Forest Regressor, and a Hybrid Ensemble Model, based on various 

evaluation metrics: MSE, MAPE, R2, and RMSE. The MSE measures the average squared difference between the 

actual and predicted values. A lower MSE indicates a better fit to the data. Among the algorithms, Gradient 

Boosting, Random Forest Regressor, and the Hybrid algorithm achieved the lowest MSE values, with 0.012, 0.0033, 
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and 0.0031 respectively. This suggests that these models provide more accurate predictions compared to others. The 

MAPE calculates the percentage difference between actual and predicted values. A smaller MAPE indicates better 

predictive accuracy. In this analysis, the Random Forest Regressor, and the Hybrid algorithm exhibit the lowest 

MAPE at 0.0014, indicating that it provides the most accurate percentage-wise predictions. The R-squared (R2) 

metric measures how well the model explains the variance in the data. An R2 value of 0.99 is achieved by all the 

algorithms, indicating that they are excellent at explaining the variance in the target variable. This suggests a strong 

correlation between the predicted and actual values for all models. The RMSE is a measure of the standard deviation 

of prediction errors. Smaller RMSE values indicate more accurate models. Both the Random Forest Regressor and 

the Hybrid Ensemble Model have the lowest RMSE values, with 0.058 and 0.055, respectively, implying that they 

provide the best overall prediction accuracy. 

Table 1: Result Presentation 

Algorithm MSE MAPE R2 RMSE 

XGB Boost 0.14 0.16 0.99 0.37 

Gradient Boosting 0.012 0.16 0.99 0.11 

K-Neighbors Regressor 0.14 0.048 0.99 0.38 

Random Forest Regressor 0.0033 0.0014 0.99 0.058 

Hybrid Ensemble Model 0.0031 0.0014 0.99 0.055 

 

In Figure 2, a visual representation is provided to showcase the performance of different individual models based on 

four distinct evaluation metrics: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), R2 Score, 

and Root Mean Squared Error (RMSE). The y-axis on the graph represents the values of these evaluation metrics, 

measured in decimal numbers, reflecting the quantitative assessment of each model's performance. On the x-axis, 

each model is represented, and the length of the bars extending from each model denotes the corresponding scores 

achieved for the mentioned metrics. For the MSE,  MAPE, and RMSE a short bar represent better performance 

whereas for the R2 Score, the lengthy bars depicts better performances. 
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Figure 2: Result Comparison Graph 

5.0 Conclusion 

This study has comprehensively investigated machine learning approaches for smart fishing farming and has thus 

applied the usage of some ensemble machine learning approaches on the fish pond dataset sourced from the Kaggle 

machine learning repository. The study has applied the viabilities of four machine learning algorithms including the 

Random Forest, KNN, Gradient Boosting, and XGBoost algorithm and has additionally hybridised the algorithm 

using the stacking approach. The results indicate that Gradient Boosting, Random Forest Regressor, and the Hybrid 

Ensemble Model outperformed the others, with the lowest MSE values of 0.012, 0.0033, and 0.0031, respectively, 

signifying their superior predictive accuracy. Furthermore, the Random Forest Regressor and the Hybrid algorithm 

exhibited the lowest MAPE at 0.0014, underscoring their precision in percentage-wise predictions. All models 

achieved a high R2 value of 0.99, showcasing their excellence in explaining variance, and both the Random Forest 

Regressor and Hybrid Ensemble Model displayed the lowest RMSE values of 0.058 and 0.055, confirming their 

superior overall prediction accuracy. Conclusively, these findings highlight the effectiveness of Random Forest and 

the Hybrid Ensemble Model in fish pond water quality assessment based on the utilized performance evaluation 

metrics. An extension of the study can include the integration of IoT devices to enhance real-time monitoring of 
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water quality in the pond while strategically placing sensors measuring parameters like temperature, pH, and 

dissolved oxygen. 

 

Availability of Dataset 

https://www.kaggle.com/datasets/monirmukul/realtime-pond-water-dataset-for-fish-farming 

Competing Interest 

The authors declare that they have no competing interests. 

Authors’ Contributions 

The manuscript was written by Oladunjoye John Abiodun, while the code was written by Andrew Ishaku Wreford. It 

should be noted that both authors contributed substantial contributions to the study. 

 

Reference 

Abaidoo, E., Melstrom, M., & Malone, T. (2021). The Growth of Imports in US Seafood Markets. Choices, 36(4), 

1-10. 

Du, Z., Cui, M., Wang, Q., Liu, X., Xu, X., Bai, Z., ... & Li, D. (2023). Feeding intensity assessment of aquaculture 

fish using Mel Spectrogram and deep learning algorithms. Aquacultural Engineering, 102345. 

Feng, Z., Zhang, T., Li, Y., He, X., Wang, R., Xu, J., & Gao, G. (2019). The accumulation of microplastics in fish 

from an important fish farm and mariculture area, Haizhou Bay, China. Science of the Total 

Environment, 696, 133948. 

Gladju, J., Kamalam, B. S., & Kanagaraj, A. (2022). Applications of data mining and machine learning framework 

in aquaculture and fisheries: A review. Smart Agricultural Technology, 2, 100061. 

Hu, W. C., Chen, L. B., Huang, B. K., & Lin, H. M. (2022). A computer vision-based intelligent fish feeding system 

using deep learning techniques for aquaculture. IEEE Sensors Journal, 22(7), 7185-7194. 

Huang, Y., Chen, C., & Miao, Y. (2022). Prediction Model of Bone Marrow Infiltration in Patients with Malignant 

Lymphoma Based on Logistic Regression and XGBoost Algorithm. Computational and Mathematical 

Methods in Medicine, 2022. 

Islam, M. M., Kashem, M. A., Alyami, S. A., & Moni, M. A. (2023). Monitoring water quality metrics of ponds 

with IoT sensors and machine learning to predict fish species survival. Microprocessors and Microsystems, 

104930. 

Islam, M.M., Mohammed, A.K., and Jia, U (2021).  Fish survival prediction in an aquatic environment using 

random forest model. Int J Artif Intell, ISSN 2252.8938 (2021): 8938. 

Jiang, Y., & Yan, F. (2022). Aquaculture Prediction Model Based on Improved Water Quality Parameter Data 

Prediction Algorithm under the Background of Big Data. Journal of Applied Mathematics, 2022. 

Kaur, G., Adhikari, N., Krishnapriya, S., Wawale, S. G., Malik, R. Q., Zamani, A. S., ... & Osei-Owusu, J. (2023). 

Recent Advancements in Deep Learning Frameworks for Precision Fish Farming Opportunities, 

Challenges, and Applications. Journal of Food Quality, 2023. 

GSJ: Volume 12, Issue 5, May 2024 
ISSN 2320-9186 1562

GSJ© 2024 
www.globalscientificjournal.com



Mangi, H. O., Onywere, S. M., & Kitur, E. C. (2023). Fish productivity response to water quality variations: A case 

study of nyumba ya mungu dam, in pangani water basin, Tanzania. International Journal of Ecology, 2023. 

Rahman, L. F., Marufuzzaman, M., Alam, L., Bari, M. A., Sumaila, U. R., & Sidek, L. M. (2021). Developing an 

ensembled machine learning prediction model for marine fish and aquaculture 

production. Sustainability, 13(16), 9124. 

Singh, U., Rizwan, M., Alaraj, M., & Alsaidan, I. (2021). A machine learning-based gradient boosting regression 

approach for wind power production forecasting: A step towards smart grid 

environments. Energies, 14(16), 5196. 

Stocker, M. D., Pachepsky, Y. A., & Hill, R. L. (2022). Prediction of E. coli concentrations in agricultural pond 

waters: application and comparison of machine learning algorithms. Frontiers in Artificial Intelligence, 4, 

768650. 

Sumayli, A. (2023). Development of advanced machine learning models for optimization of methyl ester biofuel 

production from papaya oil: Gaussian process regression (GPR), multilayer perceptron (MLP), and K-

nearest neighbor (KNN) regression models. Arabian Journal of Chemistry, 16(7), 104833. 

Xiao, Z., Peng, L., Chen, Y., Liu, H., Wang, J., & Nie, Y. (2017). The dissolved oxygen prediction method is based 

on a neural network. Complexity, 2017. 

Yilmaz, M., Çakir, M., Oral, M. A., Kazanci, H. Ö., & Oral, O. (2023). Evaluation of disease outbreak in terms of 

physico-chemical characteristics and heavy metal load of water in a fish farm with machine learning 

techniques. Saudi Journal of Biological Sciences, 30(4), 103625. 

Zambrano, A. F., Giraldo, L. F., Quimbayo, J., Medina, B., & Castillo, E. (2021). Machine learning for manually-

measured water quality prediction in fish farming. Plos one, 16(8), e0256380. 

Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in wheat using random forest regression 

algorithm and remote sensing data. The Crop Journal, 4(3), 212-219. 

 

 

 

GSJ: Volume 12, Issue 5, May 2024 
ISSN 2320-9186 1563

GSJ© 2024 
www.globalscientificjournal.com




