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Abstract:
In this paper, we introduce a notion of a generalized Nb-metric space, which is
a generalization of N -metric spaces. This new space considers the path integral
in physics. The inspiration comes from the expression of quantum mechanical
amplitude for a particle to go from the initial point x to the final point y∫

Dqe(i/h)S(q).

Fixed point theorems satisfying some contractive conditions are stated and
proved. This concept generalizes some known results in the literature.
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1 Introduction

Banach fixed point theorem was proved in 1922. This theorem gave conditions
for the existence of a unique fixed point for a self-map defined on a metric space
with completeness. After this result, much literature sprang up for continuous
maps until Kannan proved the existence of a fixed point for contractive maps
that does not imply continuity. Motivated by these results, Branciari and many
other authors tried to prove the existence of fixed points for contractive maps
in other spaces. (see [1-34]).
In this paper, we introduce the notion of generalized Nb-metric spaces, which is
a generalization of N -metric spaces. This new space considers the path integral
in physics. The inspiration comes from the expression of quantum mechanical
amplitude for a particle to go from the initial point x to the final point y∫

Dqe(i/h)S(q).

Fixed point theorems satisfying Banach contractive condition, Kanaan contrac-
tion, Chatterjea Type contraction, Zamfirescu’s contraction, and general con-
tractive condition of integral type are stated and proved.
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2 Main results

We introduce Nb-metric space inspired by the path integral in physics. We
define as follows.
Definition 2.1.
For a non-empty set X and a function db : X

2 → [0,∞) satisfying the following
properties:

N1 d(xi, xj , Nb) = 0 ⇐⇒ i = j.

N2 d(xi, xj , Nb) = d(xj , xi, Nb).

N3 d(xi, xN , Nb) ≤ b

[
N−1∑
i=1

d(xi, xi+1, Nb)

]
, b ≥ 1.

for all xi, xj ∈ X and i, j = 0, 1, 2, ..., N, i ̸= j, (X, db) is called a generalized
Nb-metric space.

The above definition draws its inspiration from the expression of quantum me-
chanical amplitude for a particle to go from the initial point x to the final point
y: ∫

Dqe(i/h)S(q). (1)

where q is the position of the particle,
∫
Dq the sum of all possible paths

between x and y,

S(q) =

∫ T

0

dtL(q, q) (2)

the classical action, h the Planck’s constant. See [11, 17-21]. The result for
quantum mechanics is that the classical path between the two points has the
largest weights and quantum effects give fluctuations around it.
The approach used is to modify the measure weight in (1) by taking the simple
case of S(q) = 0 and proceeding with Definition 2.1. This generalization extends
and improves the idea of [9] and many other results in literature (see [1-34]).
Example 2.2.
Let X = P ∪ Z, P = { 1

n}n∈N and define db : X
2 → R+ ∪ {0} by

db(x, y,Nb) =


0, x = y;

|x|, x, y ∈ P ;

|y|, otherwise

Then (X, db, Nb) is a generalized Nb-metric space but not necessarily a metric
space nor N -metric space because
db

(
1
2 ,

1
32 , Nb

)
≥ db

(
1
2 ,

2
55 , Nb

)
+ db

(
2
55 ,

3
55 , Nb

)
+ db

(
3
55 ,

1
32 , Nb

)
=⇒ 1

2 > 2
55 + 3

55 + 1
32 .

For s = 5, 6, 7, ...,
db

(
1
2 ,

1
32 , Nb

)
≤ s[db

(
1
2 ,

2
55 , Nb

)
+ db

(
2
55 ,

3
55 , Nb

)
+ db

(
3
55 ,

1
32 , Nb

)
]
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Example 2.3.
Let X = R and define db : X

2 → R+ ∪ {0} by

db(x, y,Nb) =


0, x = y;

|x|, x ∈ Q;

y2, otherwise

Then (X, db, Nb) is a generalized Nb-metric space.
Example 2.4.
Let X = R and define db : X

2 → R+ ∪ {0} by

db(x, y,Nb) =

 0, x = y;

1
2 , x, y ∈ R

Then (X, db, Nb) is a generalized Nb-metric space.

Definition 2.5. Let (X, db) be a generalized Nb-metric space. For y ∈ X,
r > 0, the db-sphere with centre y and radius r is

Sdb
(y, r) = {z ∈ X : db(y, z,Nb) < r}

Definition 2.6. Let (X, db) be a generalized Nb-metric space. A sequence
{xn} ⊂ X is db-convergent to z if the limit of db(xn, z,Nb) tends to zero as n
tends to infinity.

Definition 2.7. Let (X, db) and (X, db) be two generalized Nb-metric spaces, a
function g : X → X is db-continuous at a point x ∈ X if g−1(Sdb

(g(x), r)) ∈ X,
for all r > 0. g is db-continuous if it is db-continuous at all points of X.

Lemma 2.8. (X, db) be a generalized Nb-metric space and {xn} a sequence
in X. Then {xn} converges to xo if and only if db(xn, xo, Nb) → 0 as n → ∞.

Lemma 2.9. (X, db) be a generalized Nb-metric space and {xn} a sequence in
X. Then {xn} is said to be a Cauchy sequence if and only if db(xi, xN , Nb) → 0
as i,N → ∞.

Theorem 2.10. Let X be a complete Nb-metric space and g : X → X a
map for which there exist the real number, q satisfying 0 ≤ q < 1 such that for
each pair x, y ∈ X.

db(gx, gy,Nb) ≤ qdb(x, y,Nb) (3)

Then g has a unique fixed point.
Proof:
Suppose g satisfies condition (3) and x0 ∈ X be an arbitrary point and define a
sequence xn by xn = gnx0, then
db(xn, xn+1, Nb) = db(gxn−1, gxn, Nb) ≤ qdb(xn−1, xn, Nb)
Setting hn = db(xn, xn+1, Nb) we have

hn ≤ qhn−1 (4)
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We then deduce that

hn ≤ qhn−1 (5)

hn ≤ qnh0∀n ∈ N. (6)

Using (N3) of Definition 2.1, we obtain

db(xi, xN , Nb) ≤ b

[
N−1∑
i=1

d(xi, xi+1, Nb)

]
(7)

= b

[
N−1∑
i=1

hi

]
(8)

= b

[
N−1∑
i=1

qih0

]
(9)

Taking the limit of db(xi, xN , Nb) as N, i → ∞, we have

lim
n,m→∞

db(xi, xN , Nb) = lim
n,m→∞

b

[
N−1∑
i=1

qih0

]
= 0 (10)

So, {xn} is a db-Cauchy Sequence.
By completeness of (X, db), there exist xo ∈ X such that xn is db-convergent to
xo.
Suppose gxo ̸= xo

db(xn, gxo, Nb) ≤ qdb(xn−1, xo, Nb). (11)

Taking the limit as n → ∞ and using the fact that function is db-continuous in
its variables, we get

db(xo, gxo, Nb) ≤ qdb(xo, xo, Nb). (12)

Hence,
db(xo, gxo, Nb) ≤ 0. (13)

This is a contradiction. So, gxo = xo.
To show the uniqueness, suppose x1 ̸= x2 is such that gx1 = x1 and gx2 = x2

then
db(gx1, gx2, Nb) ≤ qdb(x1, x2, Nb). (14)

Since gx1 = x1 and gx2 = x2, we have

db(x1, x2, Nb) ≤ 0. (15)

which implies that x1 = x2.

Remark 2.11. Let (X, db) be a generalized Nb-metric space and d : X ×X →
[0,∞) a function defined by d(x, y) = db(x, y,Nb), then Theorem 2.10 reduces
to Banach contraction principle in a generalized N -metric space(an analogue of
Banach contraction principle in metric space).
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Theorem 2.12. Let X be a complete Nb-metric space and g : X → X a map
for which there exist the real number, c satisfying 0 ≤ c < 1

2 such that for each
pair x, y ∈ X.

db(gx, gy,Nb) ≤ c[db(x, gx,Nb) + db(y, gy,Nb)] (16)

Then g has a unique fixed point.
Proof:
Suppose g satisfies condition (16) and x0 ∈ X be an arbitrary point and define
a sequence xn by xn = gnx0, then

db(xn, xn+1, Nb) = db(gxn−1, gxn, Nb) (17)

≤ c[db(xn−1, gxn−1, Nb) + db(xn, gxn, Nb)] (18)

≤
[

c

1− c

]
db(xn, xn−1, Nb) (19)

Setting hn = db(xn, xn+1, Nb) and q =
[

c
1−c

]
, we have

hn ≤ qhn−1 (20)

We then deduce that

hn ≤ qhn−1 (21)

hn ≤ qnh0∀n ∈ N. (22)

Using (N3) of Definition 2.1, we obtain

db(xi, xN , Nb) ≤ b

[
N−1∑
i=1

d(xi, xi+1, Nb)

]
(23)

= b

[
N−1∑
i=1

hi

]
(24)

= b

[
N−1∑
i=1

qih0

]
(25)

Taking the limit of db(xi, xN , Nb) as N, i → ∞, we have

lim
n,m→∞

db(xi, xN , Nb) = lim
n,m→∞

b

[
N−1∑
i=1

qih0

]
= 0 (26)

So, {xn} is a db-Cauchy Sequence.
By completeness of (X, db), there exist xo ∈ X such that xn is db-convergent to
xo.
Suppose gxo ̸= xo

db(xn, gxo, Nb) ≤ c[db(gxn−1, xn−1, Nb) + db(gxo, xo, Nb)]. (27)

Taking the limit as n → ∞ and using the fact that function is db-continuous in
its variables, we get

db(xo, gxo, Nb) ≤ c[db(gxo, xo, Nb) + db(gxo, xo, Nb)]. (28)
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Hence,
db(xo, gxo, Nb) ≤ 0. (29)

This is a contradiction. So, gxo = xo.
To show the uniqueness, suppose x1 ̸= x2 is such that gx1 = x1 and gx2 = x2

then
db(gx1, gx2, Nb) ≤ c[db(gx1, x1, Nb) + db(gx2, x2, Nb)]. (30)

Since gx1 = x1 and gx2 = x2, we have

db(x1, x2, Nb) ≤ 0. (31)

which implies that x1 = x2.

Remark 2.13. Let (X, db) be a generalized Nb-metric space and d : X ×X →
[0,∞) a function defined by d(x, y) = db(x, y), then Theorem 2.12 reduces to
Kanaan contraction in a generalized N -metric space(an analogue of Kanaan
contraction in metric space).

Theorem 2.14. Let X be a complete Nb-metric space and g : X → X a map
for which there exist the real number, c satisfying 0 ≤ c < 1

2 and c < 1
b+1 such

that for each pair x, y ∈ X.

db(gx, gy,Nb) ≤ c[db(x, gy,Nb) + db(y, gx,Nb)] (32)

Then g has a unique fixed point.
Proof:
Suppose g satisfies condition (32) and x0 ∈ X be an arbitrary point and define
a sequence xn by xn = gnx0, then

db(xn, xn+1, Nb) = db(gxn−1, gxn, Nb) (33)

≤ c[db(gxn−1, xn, Nb) + db(gxn, xn−1, Nb)] (34)

≤ c[db(xn, xn, Nb) + db(xn+1, xn−1, Nb)] (35)

≤ bc[db(xn+1, xn, Nb) + db(xn, xn−1, Nb)] (36)

≤
[

c

1− bc

]
db(xn, xn−1, Nb) (37)

Setting hn = db(xn, xn+1, Nb) and q =
[

c
1−bc

]
, we have

hn ≤ qhn−1 (38)

We then deduce that

hn ≤ qhn−1 (39)

hn ≤ qnh0∀n ∈ N. (40)
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Using (N3) of Definition 2.1, we obtain

db(xi, xN , Nb) ≤ b

[
N−1∑
i=1

d(xi, xi+1, Nb)

]
(41)

= b

[
N−1∑
i=1

hi

]
(42)

= b

[
N−1∑
i=1

qih0

]
(43)

Taking the limit of db(xi, xN , Nb) as N, i → ∞, we have

lim
n,m→∞

db(xi, xN , Nb) = lim
n,m→∞

b

[
N−1∑
i=1

qih0

]
= 0 (44)

So, {xn} is a db-Cauchy Sequence.
By completeness of (X, db), there exist xo ∈ X such that xn is db-convergent to
xo.
Suppose gxo ̸= xo

db(xn, gxo, Nb) ≤ c[db(gxn−1, xo, Nb) + db(gxo, xn−1, Nb)]. (45)

Taking the limit as n → ∞ and using the fact that function is db-continuous in
its variables, we get

db(xo, gxo, Nb) ≤ c[db(gxo, xo, Nb) + db(gxo, xo, Nb)]. (46)

Hence,
db(xo, gxo, Nb) ≤ 0. (47)

This is a contradiction. So, gxo = xo.
To show the uniqueness, suppose x1 ̸= x2 is such that gx1 = x1 and gx2 = x2

then
db(gx1, gx2, Nb) ≤ c[db(gx1, x2, Nb) + db(gx2, x1, Nb)]. (48)

Since gx1 = x1 and gx2 = x2, we have

db(x1, x2, Nb) ≤ 0. (49)

which implies that x1 = x2.

Remark 2.15. Let (X, db) be a generalized Nb-metric space and d : X ×X →
[0,∞) a function defined by d(x, y) = db(x, y), then Theorem 2.14 reduces to
Chatterjea Type Contraction in a generalized N -metric space(an analogue of
Chatterjea Type Contraction in metric space).

Theorem 2.16. Let X be a complete Nb-metric space and g : X → X a map
for which there exists real numbers, i ∈ [0, 1), j ∈ [0, 1

2 ), k ∈ [0, 1
2 ) with k < 1

b+1
satisfying at least one of the following:

Z1 db(gx, gy,Nb) ≤ idb(x, y,Nb)
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Z2 db(gx, gy,Nb) ≤ j[db(x, gx,Nb) + db(y, gy,Nb)]

Z3 db(gx, gy,Nb) ≤ k[db(x, gy,Nb) + db(y, gx,Nb)]

Then g has a unique fixed point.

Proof:
It follows from Theorem 2.10, Theorem 2.12 and Theorem 2.14.

Remark 2.17. Let (X, db) be a generalized Nb-metric space and d : X ×X →
[0,∞) a function defined by d(x, y) = db(x, y), then Theorem 2.16 reduces to
Zamfirescu’s contraction in a generalized N -metric space(an analogue of Zam-
firescu’s contraction in metric space).

Theorem 2.18. Let X be a complete Nb-metric space and g : X → X a map
for which there exist the real number, c satisfying 0 ≤ c < 1

2 such that for each
pair x, y ∈ X. ∫ db(gx,gy,Nb)

0

ϕ(t)dt ≤ c

∫ db(x,y,Nb)

0

ϕ(t)dt (50)

where ϕ : [0,∞) → [0,∞). Then g has a unique fixed point.
Proof:
Suppose g satisfies condition (32) and x0 ∈ X be an arbitrary point and define
a sequence xn by xn = gnx0, then

∫ db(xn+1,xn,Nb)

0

ϕ(t)dt =

∫ db(gxn,gxn−1,Nb)

0

ϕ(t)dt (51)

≤ c

∫ db(xn,xn−1,Nb)

0

ϕ(t)dt (52)

≤ cn
∫ db(x1,x0,Nb)

0

ϕ(t)dt (53)

Setting hn =
∫ db(xn+1,xn,Nb)

0
ϕ(t)dt, we have

hn ≤ chn−1 (54)

We then deduce that

hn ≤ chn−1 (55)

hn ≤ cnh0∀n ∈ N. (56)

Using (N3) of Definition 2.1, we obtain

db(xi, xN , Nb) ≤ b

[
N−1∑
i=1

d(xi, xi+1, Nb)

]
(57)

= b

[
N−1∑
i=1

hi

]
(58)

= b

[
N−1∑
i=1

qih0

]
(59)
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Taking the limit of db(xi, xN , Nb) as N, i → ∞, we have

lim
n,m→∞

db(xi, xN , Nb) = lim
n,m→∞

b

[
N−1∑
i=1

qih0

]
= 0 (60)

So, {xn} is a db-Cauchy Sequence.
By completeness of (X, db), there exist xo ∈ X such that xn is db-convergent to
xo.
Suppose gxo ̸= xo∫ db(xn,gxo,Nb)

0

ϕ(t)dt ≤ c

∫ db(xn−1,xo,Nb)

0

ϕ(t)dt. (61)

Taking the limit as n → ∞ and using the fact that the function is db-continuous
in its variables, we get∫ db(xo,gxo,Nb)

0

ϕ(t)dt ≤ c

∫ db(xo,xo,Nb)

0

ϕ(t)dt = c

∫ 0

0

ϕ(t)dt (62)

A contradiction. So, gxo = xo.
To show the uniqueness, suppose x1 ̸= x2 is such that gx1 = x1 and gx2 = x2

then ∫ db(gx1,gx2,Nb)

0

ϕ(t)dt ≤ c

∫ db(x1,x2,Nb)

0

ϕ(t)dt. (63)

Since gx1 = x1 and gx2 = x2, we have∫ db(x1,x2,Nb)

0

ϕ(t)dt ≤ 0. (64)

which implies that x1 = x2.

Remark 2.19. Let (X, db) be a generalized Nb-metric space and d : X ×X →
[0,∞) a function defined by d(x, y) = db(x, y), then Theorem 2.18 reduces to
general contractive condition of integral type in a generalized N -metric space(an
analogue of general contractive condition of integral type in metric space).

3 Conclusions

In this paper, the notion of generalized Nb-metric spaces was introduced. This
is a generalization of N -metric spaces, b-metric space, metric space, and many
other spaces in literature. This newly introduced space considers the path in-
tegral in physics. The motivation comes from the expression of quantum me-
chanical amplitude for a particle to go from the initial point x to the final point
y ∫

Dqe(i/h)S(q).

Fixed point theorems satisfying some contractive conditions are stated and
proved. This concept generalizes some known results in the literature.
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