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Abstract 
Signal path loss models play significant role in predicting signal strength, its attenuation, and enable characterisation of 

the radio frequency channel. Distance, transmitting frequency, and obstacles are critical elements that emphasize the 

signal strength variability affecting signal propagation at various areas. This study employs denoised data and unprocessed 

data to formulate path loss models using drive-test method. The signal strengths were measured, analyzed, and presented 

considering four base-stations (BS) within Port Harcourt using Long Term Evolution (LTE) at 2600MHz. A comparative 

analysis was performed between COST231-Hata model, Okumura-Hata model, and the developed models, based on 

metrics such as RMSE, MAE, and correlation coefficient (R). The developed model using denoised data exhibited excellent 

performance with the lowest RMSEs of 2.88dB, 3.94dB, 4.76dB, 6.94dB, demonstrating its accuracy in predicting path loss. 

Additionally, it yielded the least MAE values of 2.20dB, 2.87dB, 3.48dB, 5.82dB as compared to the existing standard 

models. The correlation coefficients of the developed model showed close alignment with the measured path loss of 

90.04%, 78.61%, 92.21% and 91.23% for the BSs respectively. Validation of the developed models with data from different 

BSs confirms high efficiency of 97.41%. Conclusively, COST231-Hata and Okumura-Hata models exhibited limited accuracy 

in predicting path loss within Port Harcourt. The developed model illustrates exceptional performance and it’s 

recommended for effective communication network planning and optimization in the area. Future research is encouraged 

to expand the study to include more BS, regions, and locations for an in-depth and robust model development.    
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1. Introduction 

The advent of 3G and 4G cellular-based wireless communication systems led to technological advances in video and 

Internet data that were not possible with the 2G-GSM introduction [1]. Despite the presence of numerous 

telecommunications companies operating 3G Universal Mobile Telecommunication System (UMTS) and 4G LTE in 

Nigeria, mobile user satisfaction and signal quality remain substandard. Users’ complaints of weak or fluctuating 

signal strength, dropped calls, echoes during calls, and delays in downloading files, with pronounced problems 

occurring on broadband cellular networks [2]. 
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[3] has observed that, inaccurate estimation of signal path loss when planning cellular networks is a major cause of 

dead or weak signal. To address dead zones and quality of service issues in cellular networks, one approach is to 

employ a reliable path loss model in cellular network planning [5][6].  

The main objective of this study was to implement a proactive measurement-based hybrid technique, that combines 

discrete wavelet transform and genetic algorithms, to develop an adaptive hybrid path loss prediction model, for 

optimal mobile network planning, particularly in parts of Port Harcourt, Nigeria. 

2 Existing Path Loss Models 

Several path loss models exist and are replete in literature, they include; 

2.1 Free-Space Path Loss Model 

The Free-Space Path Loss (FSPL) model is a fundamental theoretical approach for estimating signal path loss in free 

space without obstacles [9]. It is characterized by the wavelength of signal propagation and depends on the distance 

between the base-station and mobile station. It is expressed as: 

𝑃𝐿(𝑑𝐵) = 20 log(𝑑) + 20 log(𝑓) + 20 log (
4𝜋

𝑐
)      (1) 

Where; d is the distance, f is the frequency, and c is the speed of light. It is Ideal for predicting signal loss in 

unobstructed environments, such as, satellite communication or in open outdoor areas. 

2.2 COST 231-Hata Model 

The COST 231-Hata model is an empirical path loss model formulated for urban and suburban areas. It is an extension 

of the Hata model which includes additional factors for more accurate predictions [8]. Frequency, antenna height of 

the BS, antenna height of the mobile station and distance are taken into account. It is suitable for frequency range 

between 1500 MHz to 2000 MHz. and it is commonly used to predict signal path loss in urban and suburban areas, 

particularly in the context of cellular network planning [9]. It can be represented as [4]  

𝑃𝐿 (𝑑𝐵) = 46.3 + 33.9 log(𝑓) − 13.82 log(ℎ𝑡) + (44.9 − 6.55 log ℎ𝑡) log 𝑑 + 𝐶𝑚   (2) 

Where, Cm is the correction factor based on the type of environment (it is equal to 0 db, for median and sub urban 

cities; and equal to 3 db for metropolitan areas. 

f = Frequency of Transmission in Megahertz (MHz)  

ht = Base Station Antenna effective height in Meters (m)  

d = Link distance in Kilometers (km)  

2.3 Okumura-Hata Model:  

The Okumura-Hata model is another empirical path loss model developed for urban and suburban environments, 

derived from the Hata model. It includes adjustments based on various environmental and geographical parameters 

[10][11]. It considers frequency, base-station antenna height, mobile-station antenna height, and distance. It can be 

suitable within frequency range of 150 MHz to 1500 MHz and it is commonly used in mobile network planning, of 

which it can provide reasonable and accurate predictions for signal propagation in several urban and suburban areas 

[12]. Its mathematical representation is as shown below; 
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       69.55 26.16log 13.82log 44.9 6.55log logt r tL urban
P dB f h a h h d        (3) 

Where; 𝑓 = Frequency in megahertz and ranges from 150 MHz to 1000 MHz  

h𝑡 = Effective transmitter antenna height (in meters): 30 m to 200 m  

h𝑟 = Effective receiver antenna height (in meters): 1 m to 20 m  

𝑑 = Separation distance (in km): 1 km to 20 km  

For small to medium areas,  

   ( ) 1.1log 0.7 1.56log 0.8r ra h f h f           

For large environment,  

 
2

( ) 8.29 log 1.54 1.1r ra h h    ;   for      f < 300MHz       

 
2

( ) 3.2 log 11.75 4.97r ra h h    ;  for      f ≥ 300MHz      

For suburban environment,  

     
2

  2 log 5.4
28

L suburban L urban

f
P P dB

  
    

  
      (4) 

  

For rural environment,  

       
2

4.78 log 18.33log 40.98
L rural L urban

P P dB f f         (5) 

These path loss models are valuable tools in the field of telecommunications for evaluating signal loss and supporting 

the planning and optimization of wireless communication systems. Selecting the most appropriate model depends 

on the specific characteristics of the area and the frequency range of interest [13]. 

3 Methodology 

In this research, a field drive test setup was used to acquire real time signal data. The driving test included 

comprehensive measurements of received signal strength and quality of service parameters at the receiver terminal 

within the evaluated coverage area of which four base-stations were considered, identified as BS 1, BS 2, BS 3, and 

BS 4. Tools used for the field drive test system included the Global Positioning System (GPS), LTE modem, an MTN 

internet data SIM card, a HP laptop, an inverter, a scanner, direct test cables, Matlab software, MapInfo software 

and Telephone Mobile Software (TEMS). MapInfo software was specifically used to display test site maps and create 

route data. Using these field drive test system tools, real time signal data were collected around four BSs in Port 

Harcourt, Nigeria, all operating at a 2600 MHz bandwidth. 
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Fig.1: Flowchart of the proposed hybrid path loss model development 

3.1 Estimation of the Measured Path loss 
Path loss is the decrease in signal power level during propagation from the base-station to the receiver [14]. 

Estimation of the signal path loss can be achieved by; 

PLm (dB) = Pt + Gt + Gr – LAB – LFC – RSS      (6) 

Where; 

PLm = measured path loss in dB 

Pt = transmit power in dBm 

Gt = transmit antenna gain (dBi) 

Gr = receiving antenna gain (dBi) 

LAB = antenna body loss (dB) 

LFC = feeder cable loss (dB) 

RSS = Received signal strength data (dBm) 

3.2 Generic Model Formulation 
The COST 231-Hata model is divided into three portions: the offset parameter, P0, the system parameter, P1, and the 

slope of the model curve parameter.  

Hence, the formulation of the generic model in equation (2) was deduced as follows: 

Offset parameters, 

   P0 = 46.3 − 13.82 log(ℎt) − 𝑎(ℎr) + 𝐶𝑚  

Slope of the model curve,  

P1 = [44.90 − 6.550 log(ℎt )]log(d) 

System design parameter,  

P2 = 33.9 log(𝑓) 

Therefore;  

P Lp = P0 + P1 +P2      

Furthermore, let:   

P0 = Z1 

P1 = Z3 log(d) 

P2 = Z2 log(f) 

PL (dB) = Z1 + Z3 log (d) + Z2 log (f)       (7)  

Where;  

PL is generic path loss of the COST 231-Hata model.  
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Z1, Z2, and Z3 are deduced parameters.  

3.3 Genetic Algorithm (GA) 
The problems associated in cellular network planning are resolved using the Darwin’s law of nature or natural 

selection to solve optimization problems. So, it is possible to deploy GA optimization tool to resolve number of 

optimization issues, as such when the cellular network planning is well done, the performance level is highly effective 

and significant high QoS to the cellular network users can be achieved [15]. 

In this work, binary encoding type was utilized considering the problem. After encoding to binary chromosomes, 

some of the chromosomes were selected randomly. The next process was to evaluate the fitness function of the 

individual selected chromosomes. After which three criteria were carried out which involves crossover, selection, 

and mutation to achieve the second iteration and subsequently the best solutions to the issue are gotten. GA 

performs its optimization duty through iteration method. The iterations are designed to continue pending when the 

GA achieves the best solution of the iteration processes. 

3.4 Metric Evaluation 

In this paper, three metrics were used to evaluate the regression between actual data and predicted data. They are 

the root mean square error (RMSE), mean absolute error (MAE), and the correlation coefficient (R) of the developed 

model and predicted model were evaluated. The empirically expressions for the three metrics are; 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑚 − 𝑦𝑝)

2𝑛
𝑖=1         (8) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑚 − 𝑦𝑝|𝑛

𝑖=1   

And,           (9) 

𝑅 =
∑ (𝑦𝑚−𝑦𝑚(𝑚𝑒𝑎𝑛))

2
−∑ (𝑦𝑝−𝑦𝑚)

2𝑛
𝑖=1

𝑛
𝑖=1

∑ (𝑦𝑚−𝑦𝑃(𝑚𝑒𝑎𝑛))
2𝑛

𝑖=1

       (10) 

 
4 Results and Discussion 
 
Table 1: Developed path loss models 
 
 

               -2.4+24.2log(d)+26.8log(f)    -0.9+22.9log(d)+27.1log(f)

 

 

Sites           Hybrid Wavelet-GA               GA 

 

PH 1      -4.3+22.0log(d)+29.2log(f)      5.3+20.7log(d)+27.5log(f) 

PH 2       9.3+14.9log(d)+28.6log(f)     -0.6+14.5log(d)+30.8log(f) 

PH 3      -7.0+30.0log(d)+25.2log(f)      0.4+26.5log(d)+25.8log(f) 

PH 4      -7.5+30.0log(d)+24.0log(f)     -8.5+30.0log(d)+24.3log(f) 
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Fig.2: Measured signal data modeling for BS 1 
 

 
Fig.3: Measured signal data modeling for BS 2 
 

 
Fig.4: Measured signal data modeling for BS 3 
 

 
Fig.5: Measured signal data modeling for BS 4 

 
Fig. 6: Analysis of measured path loss data as 
compared with COST231-Hata and Okumura-Hata 
models for BS 1 

 
Fig.7: Analysis of measured path loss data as 
compared with COST231-Hata and Okumura-Hata 
models for BS 2 
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Fig. 8: Analysis of measured path loss data as 
compared with COST231-Hata and Okumura-Hata 
models for BS 3 

 
Fig. 9: Analysis of measured path loss data as 
compared with COST231-Hata and Okumura-Hata 
models for BS 4 

 
Fig. 10: RMSE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 1 

 
Fig. 11: RMSE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 2 

 
Fig. 12: RMSE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 3 

 
Fig. 13: RMSE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 4 
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Fig. 14: MAE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 1 

 
Fig.15: MAE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 2 

 
Fig. 16: MAE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 3 

 
Fig. 17: MAE of Wavelet-GA model, GA model, 
COST231-Hata model as compared to measured path 
loss data for BS 4 
 

 
Fig. 18: Correlation coefficient of Wavelet-GA model, 
GA model and COST231-Hata model as compared to 
measured path loss data for BS 1 
 

 
Fig. 19: Correlation coefficient of Wavelet-GA model, 
GA model and COST231-Hata model as compared to 
measured path loss data for BS 2 
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Fig. 20: Correlation coefficient of Wavelet-GA model, 
GA model and COST231-Hata model as compared to 
measured path loss data for BS 3 

Fig. 21: Correlation coefficient of Wavelet-GA model, 

 
Fig. 22: Validation of proposed hybrid Wavelet-GA 
model considering another BS 
 

GA model and COST231-Hata model as compared to  

Measured path loss data for BS 4 

 

Table 1 presents the developed models considering denoised and unprocessed measured signal data. The second 

column are the developed path loss model using denoised signal data (Wavelet-GA), where as the third column 

detailed the developed path loss model using unprocessed signal data (GA). 

The analyzed results from Figs. 2 to 5 represent the measured signal data modeling with respect to the regression. 

The modeling showed very high correlation coefficient throughout the BSs, as such the extracted RSS data are 

observed to not be below standard. 

The analyzed results from Figs. 6 to 9 compared the path losses of the existing Okumura-Hata model and the existing 

COST231-Hata model with measured path losses for the different BSs. It showed that the existing COST 231-Hata 

and Okumura-Hata models estimated higher values of path losses as against the measured path loss value. However, 

Okumura-Hata model performed better than COST231-Hata model in all the BSs.  
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The analyzed results in Figs. 10 to 13 revealed the RMSE prediction accuracies of the hybrid Wavelet-GA model, the 

GA model, and the COST231-Hata model compared to the measured path loss values. The results showed that the 

hybrid developed Wavelet-GA model have high performance accuracy and consistently estimated the lowest RMSE 

values throughout the BSs. 

Furthermore, Figs. 14 to 17 presents the analyzed results using MAE. In this context, the developed hybrid Wavelet-

GA model gave the lowest MAE values, while the COST231-Hata model consistently gave the highest values across 

all BSs. 

Furthermore Figs. 18 to 2, again illustrated the correlation coefficient (R) in the comparison of the measured path 

losses with the developed hybrid Wavelet-GA model, GA model and the standard COST231-Hata model. The results 

showed that the developed hybrid Wavelet-GA model achieved the highest R values, indicating a strong correlation 

between the measured path loss and the developed hybrid Wavelet-GA model. 

The analyzed results in Fig. 22, demonstrated the validation prediction capabilities of the newly formulated hybrid 

Wavelet-GA model. Validation of the developed path loss model involves evaluating its ability to predict path loss 

using a different dataset other than those used in its development phase. This evaluation allows for the 

determination of the effectiveness of the model in predicting path losses within different BSs and demonstrates its 

dynamic and efficient prediction performance. It is therefore evident that the hybrid Wavelet-GA model exhibited 

performance level of about 92.07%, indicating successful validation. 

5 Conclusion 
The results clearly proved that the developed Wavelet-GA model consistently outperformed existing standard 

models. It showed lower RMSE and MAE values as well as higher correlation coefficients. Therefore, one approach 

to addressing dead spots and quality of service issues in cellular networks is to use a hybrid Wavelet-GA path loss 

model when planning and optimizing wireless communication system. The developed path loss model in this study 

is reliable and promising and has the capacity in mitigating challenges such as dead signal zones, weak/fluctuating 

coverage signal strength, dropped calls, mid-call echoes, and file download delays for mobile phone users. Its 

efficiency suggests that there is potential to restore high signal levels within parts of Port Harcourt, Nigeria. 
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