

GSJ: Volume 8, Issue 9, September 2020, Online: ISSN 2320-9186 www.globalscientificjournal.com

HETEROCYCLIC KETO-OXIMES PRECURSORS IN THE SYNTHESIS OF SOLVATO (MEDIA)-CHROMIC HEAD HETEROCYCLIC SELF-ASSEMBLY [ICT] FUNCTIONAL [DSSCs] & Related Cyanine DYES

A. I. M. KORAIEM, S.M.SAYED, M. M. GOMAA & M. H. YOUSRY¹

Chemistry Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt,

ABSTRACT

Heterocyclic keto- or methylene keto-oxime precursor's was oriented towards the synthesis of solvato (media)-chromic N-bridge head heterocyclic cyanines & Self-assembly [ICT] functional & related zero-1[4],11(13) [4] methine, bis-zero-7,13[4(4)] methine & di-4[2(4)] methine cyanines. The new self-assembly [ICT] functional & their cyanines were identified by elemental & spectral analyses. The visible absorption spectra of some selected dyes were investigated in 95% ethanol, pure organic solvents & universal buffer solution for photophysical characteristics. The UV -Vis. spectral studies showed that the dyes are absorbed in the region of λ_{max} (485-570) nm. Their electron cloud delocalization in HOMO/LUMO levels were studied by DFT using Gaussian 09 software. DFT results reveal that the dyes showed effective charge separation in its molecular orbitals levels, which reflected in its ICT behaviour. Time-dependent density functional theory (TD-DFT) were applied to theoretically explored the first excitation energy (E0-0) of these dyes which in high Compatibility with experimental results with an accuracy of (0.1-0.3 eV). This approach has been successfully applied to describe the great effect of p-conjugation length and substituents of chromophore on the variations of maximum absorption and excitation energy of the dyes

Keywords: Functional & Related Cyanine Dyes, Synthesis, Spectral Solvato (Media) chromism Behaviors, delocalization in HOMO/LUMO levels

INTRODUCTION

Owing to its importance from both fundamental and applied perspectives, the field of charge transfer has attracted continued interest from scientists over more than 80 years. We then turn from charge migration to intramolecular charge transfer **[ICT]** We then turn from charge migration to intramolecular charge transfer heterocyclic [ICT] moieties. Moieties in the heterocyclic [ICT] moieties have received considerable attention in the field of synthetic organic chemistry because of their special structural properties [1a, **b**]. Intramolecular (Internal) Charge -Transfer N-Bridge Self-Assembly heterocyclic functional as organic dye molecules in particular, are lacking and represent deficiencies in total picture and attracted increasing attention owing to their unique electronic and/or photonic properties [2,3] solar cells, etc. [4]. The most traditional and promising approach is how to reach the goal and trend in order to systematize such dyes in Functional Molecular Systems according

¹ This article is extracted from M.Sc. Thesis, Mahmoud Hussein Yousery Register as Post Graduated in 2016 under Supervision of Prof. Dr. Ahmed I.M.Koraeim, presented for Publication in Global Scientific Journal, 2020

to their quite different physico-chemical features and possible photosensitizes-chemical structure relationship **[5,6]**. We have various self-assembled organic including opportunities for applications in designed molecular sensors based on changes in the efficiency of **[ICT]** process upon complexation. To date, the obtaining of self-assembly process as organic nanomaterial is still highly desirable for the advancement of organic nano science (technology), **[7]**.

RESULTS AND DISCUSSION

Reaction of 4-acetyl-oximino-3-methyl-1-phenyl-2-pyrazolin-5-one, Scheme (1A), comp. No. (1) & guinolin-8-ol and 2-methyl-pyridine in, equimolar amount, in HCL and/or iodine afforded 1-(2-(hydroxyimino)-2-(3-methyl-5-oxo-1-phenyl-4, 5-di [H]-1H-pyrazol-4-yl) ethyl)-2-methyl pyridin-1-ium-iodide, Scheme (1A), comp. No. (2a-c) & 8-hydroxy-1-((1-(3-methyl-5-oxo-1phenyl-4, 5-di [H]-1H-pyrazol-4-yl) ethylidene) amino) guinolin-1-ium, Scheme (1A), comp. No. (4). The later (4) Undergo Intramolecular heterocyclization ring closure in, equimolar amount, under piperidine to afford 2-(3-methyl-5-oxo-1-phenyl-4, 5-di[H]-1H-pyrazol-4-yl)-1Hpyrido [3, 2, 1-ij] cinnolin-10-ium chloride, Scheme (1A), comp. No. (5). The reaction of 2-(3methyl-5-oxo-1-phenyl-4,5-di[H]-1H-pyrazol-4-yl)-1H-pyrido[3,2,1-ij]cinnolin-10-ium chloride, dye (5) with 1-ethylpyridin-1-ium iodide salts in, equimolar amount, under piperidine catalysis afforded 3-(1-ethylpyridin-4(1H)-ylidene)-2-(3-methyl-5-oxo-1-phenyl-1,5-di[H]-4H-pyrazol-4ylidene)-2,3-di[H]-1H-pyrido[3,2,1-ij] cinnolin -10-ium chloride, Scheme (1A), comp. No. (6ac). Cyclo condensation reaction of 1-(2-(hydroxyimino)-2-(3-methyl-5-oxo-1-phenyl-4,5-di[H]-1H-pyrazol-4-yl)ethyl)-2-methyl pyridin-1-ium iodide, Scheme (1A), comp. No. (2a-c) in piperidine catalysis afforded 3-(3-methyl-5-oxo-1-phenyl-1,5-di[H]-4H-pyrazol-4-ylidene)-1,2,3,4-tetra[H]-pyrido[1,2-a]pyrazin-5-ium-iodide, Scheme (1A), comp. No. (7a-c). Reaction of dyes (7a-c) with pyridin-4-ium ethiodide and/or 2-methyl-pyridin-2-ium-ethiodide, in equimolar amount, under piperidine catalysis afforded 4-(1-(1-ethylpyridin-4(1H)-ylidene)-3,4-di[H]-11l4-pyrazino[1,2-a]quinolin-2(1H)-ylidene)-5-methyl-2-phenyl-2,4-di[H]-3H-pyrazol-3-one, Scheme (1A), comp. No. (8a-c), 3,11-dimethyl-1-phenyl-1H-pyrazolo [4',3': 5, 6] pyrano [4,3-e]pyrido[1,2-a]pyrazine-10,12-diium chloride iodide Scheme (1A), comp. No. (9a-c) & 3-methyl-1-phenyl-4,5-di[H]-1H-pyrazolo[3,4-a]pyrido [1',2':4,5] pyrazino[2,3-c] quinolizin-10,11-diium iodide Scheme (1A), comp. No. (10a-c), Scheme (1A). Reaction of 3-methyl-1-phenyl-pyrazol-5-one & ethyl acetoacetate under acetic acid catalysis afforded 4aceto acetyl-3-methyl-1-phenyl-2-pyrazolin-5-one, Scheme (1B), comp. No. (11) [8]. The interaction of (11) with glyoxal, in equimolar amount, under Acetic acid catalysis afforded 3-(3-methyl-5-oxo-1-phenyl-4,5-di[H]-1H-pyrazole-4-carbonyl)-4-oxopent-2-enal, Scheme (1B), comp. No. (12). Cyclo- condensation of dye (12) was conducted under piperidine catalysis to afford 5-acetyl-3-methyl-1-phenyl-1H-indazole-4,7-dione, Scheme (1B), comp. No. (13). Selective quaternization of pyridine, quinolone and isoquinolin by (13), in equimolar amount, 1-(2-(3-methyl-4,7-dioxo-1-phenyl-4,7-di[H]-1H-indazol-5-yl)-2-I₂/EtOH achieved usina oxoethyl) pyridin-1-ium iodide dye (14a), 1(2-(3-methyl-4,7-dioxo-1-phenyl-4,7-di[H]-1Hindazol-5-yl)-2 oxoethyl) quinolin-1-ium iodide (14b), and/or 5-(2-(2l4-isoquinolin-2-yl)acetyl)-3-methyl-1-phenyl-1H-indazole-4,7-dione, iodide salt (14c) respectively. Continue Scheme (1B). Piperidine catalysis in ethanol for Scheme (1B), comp. No. (14a-c) afforded 9-methyl-7,8,12-trioxo-11-phenyl-7,8,11,12-tetra[H]-6H-pyrazolo[4,3-g]pyrido[2,1-a]isoquinolin-5-iumiodide, Scheme (1B), comp. No. (16a), 9-methyl-7,8,12-trioxo-11-phenyl-7,8,11,12-tetra[H]-6Hpyrazolo [4',3':6,7] isoquinolino[2,1-a]quinolin-5-ium iodide (16b) and/or 3-methyl-4,5,14trioxo-1-phenyl-4,5,6,14-tetra[H]-1H-isoquinolino[3,2-a]pyrazolo[4,3-g]isoquinolin-7ium iodide (16c). Reaction of (16a) with pyridin-4-ium ethiodide, in equimolar amount, under piperidine catalysis afforded 6-(1-ethyl-1l4,4l5-pyridin-4-ylidene)-9-methyl-7,8,12-trioxo-11phenyl-7,8,11,12-tetra[H]-6H-pyrazolo[4.3-q]pyrido[2,1-a]isoquinolin-5-ium iodide, Scheme (1B), comp. No. (17). The formation of Scheme (1B), comp. No. (16a-c) was chemically confirmed by their treatment with aqueous solution of KI followed by the intense liberation clawed of iodine on conc. H₂SO₄ warming. This is a criterion for replacement of ium-chloride by iodide analogous, Scheme (1B). Reaction of (18) with Acetyl acetone, in equimolar amount on conc.H₂SO₄ afforded 3, 5, 8-trimethyl-4, 9-dioxo-6-(3-oxobutanoyl)-1-phenyl-7-(pyridin-1-ium-1-yl)-4,9-di [H]-1H-pyrazolo [3, 4-g] isoquinolin-6-ium chloride iodide, Scheme (1B), comp. No. (21). Piperidine catalysis in ethanol for (21) afforded 3,6,8-trimethyl-4,16dioxo-1-phenyl-4,16-di[H]-1H-indolizino[3,2-c]pyrazolo[3,4-g]pyrido[2,1-a]isoquinolin-9-ium chloride, Scheme (1B), comp. No. (22). The formation of 5-(1-(hydroxy-imino) ethyl)-3methyl-1-phenyl-1H-indazole-4, 7-dione (15) was chemically confirmed. Meanwhile, the interaction of Scheme (1B), comp. No. (13), hydroxylamine in the presence of sodium acetate in equimolar amount. The later (15) was converted into 1-(3,5,8-trimethyl-4,9-dioxo-1-phenyl-4,9-di[H]-1H-pyrazolo[3,4-g]isoquinolin-7-yl)pyridin-1-ium iodide, Scheme (1B), comp. No. (18) via the reaction with 1-(2-oxopropyl)pyridin-1-ium iodide in piperidine catalysis in ethanol and then Acetic acid medium. Selective guaternization of pyridine, quinolone and isoquinolin by the later Scheme (1B), comp. No. (15), in equimolar amount, I₂/EtOH achieved 1-((1-(3-methyl-4,7-dioxo-1-phenyl-4,7-di [H]-1H-indazol-5using yl)ethylidene)amino)pyridin-1-ium chloride, Scheme (1B), comp. No. (19a), 1-((1-(3-methyl-4,7-dioxo-1-phenyl-4,7- di[H]--1H-indazol-5-yl) ethylidene) amino) quinolin-1-ium chloride (19b) and/or 2-((1-(3-methyl-4,7- dioxo- 1-phenyl-4,7-di[H]-1H-indazol-5-yl) ethylidene) amino)-2l4-isoquinolin-1-ylium chloride (19c) respectively. Fusion in piperidine for (19a-c) afforded 7,9-dimethyl-8,12-dioxo-11-phenyl-11,12-di [H]-8H-pyrazolo[4,3-g] pyrido [2,1a]phthalazin-5-ium chloride, Scheme (1B), comp. No. (20a), 7,9-dimethyl-8,12-dioxo-11phenyl-11,12- di [H]-8H-pyrazolo[4,3-g]quinolino[2,1-a] phthalazin-5-ium chloride, Scheme (1B), comp. No. (20b) and/or 3,5-dimethyl-4,14-dioxo-1-phenyl-4,14-di[H]-1H-7I4isoquinolino[3,2-a]pyrazolo[4,3-g] phthalazin-8-ylium chloride (20c). The formation of (16a-c) was chemically confirmed by their treatment with aqueous solution of KI followed by the intense liberation clawed of iodine on conc.H₂SO₄ warming. This is a criterion for replacement of ium-chloride by iodide analogous, Scheme (1B),

The formation of 4-(1,5-Dimethyl-3-phenyl-3H-pyrazolo[4,3-e]pyrido [1',2':4,5] pyrazino[1,2-c] pyrimidin-13-yl)-zero-1[4]methine & 4,4'-(1,5-dimethyl-3-phenyl-3H-pyrazolo [4,3-e]pyrido [1',2':4,5] pyrazino [1,2-c]pyrimidin-7,13-diyl-bis-zero-methine **Scheme (2)**, comp. No. **(7a,b & 8a-f)** was started by preparation of 3-methyl-1-phenyl-pyrazolin-4,4-keto-methylene-pyridin (quinolin)-1-ium ethiodide salts **Scheme (2)**, comp. No. **(1b) [9]**, followed by the reaction of an ethanolic solution of **Scheme (2)**, comp. No. **(1b)** with hydroxyl amine in the presence of sodium acetate to afford 1-ethyl-4-(2-(hydroxyi-mino)-2-(3-methyl-1-phenyl-4,5-di[H]-1H-pyrazol-5-imine-4-yl-ethyl-quinolin-1-ium iodide, **Scheme (2)**, comp. No. **(6)**. The reaction of an ethanolic solution of **(6)** with I₂ and pyridine (quinoline) and/or 2-methyl-quinoline afforded 1-ethyl-4-(2-(hydroxyimino)-2-(3-methyl-1-phenyl-4,5-di[H]-1H-pyrazol-5-imine-4-yl-1-(2-methyl-pyridin (quinolin)-1-ium-1-yl-ethyl-quinolin-1-ium-iodide, **Scheme (2)**, comp. No. **(7a,b)**. Acetylating of **(7a,b)** under acetic acid anhydride afforded 3-(5-acetamido-3-methyl-1-phenyl-1H-pyrazol-4-yl)--1,4-di[H]pyrido [1,2-a]pyrazin-5-ium-iodide-zero-

pyrazolo[4,3-e]pyrido [1', 2':4,5] pyrazino [1,2-c]pyrimidin-13-yl)-zero-1[4] methine cyanine dye, **Scheme (2)**, comp. No. **(9a,b).** Moreover the reaction of an ethanolic solution of **(9a,b)** with pyridin [quinolin]-4(1)-ium-1-ethiodide salts and few (ml)s of piperidine afforded 4,4'- (1,5-dimethyl-3-phenyl-3H-pyrazolo[4,3-e]pyrido [1',2' :4 ,5] pyrazino[1,2-c]pyrimidin-7,13- diyl-bis-zero-7,13[4(4)]-methine, **Scheme (2)**, comp. No. **(10a-e) Scheme (2)**.

Privileged precursors Pyridinium iodide derivative of 4-acetyl-1-phenyl-pyrazol-5-one /5oxime Scheme (3A), comp. No. (21A, B) [10,11] were selected for heterocyclization process in EtOH/piperidine to form 3-methyl-4-oxo-1-phenyl-& 4-(hydroxy-imino)-3-methyl-1-phenyl-4,5-di[H]-1H-Pyrazolo[3,4-a] quinolizin-6-ium-iodide, (22A, B) which on acetylation using acetic anhydride afforded 5-acetyl-3-methyl-4-oxo-& 5-acetyl-4-(hydroxyimino)-3-methyl-1phenyl-4,5-di[H]-1H-pyrazolo [3,4-a] quinolizin-6-ium-iodide, Scheme (3A), comp. No. (22C, D) [8]. either, the interaction of (22A) with glycine or heterocyclization of Scheme (3A), comp. No. (22D) in AcOH achieved 11-methyl-3-oxo-9-phenyl-2,3,3a,9-tetra[H]dipyrrolo[3,4a:2',3'-c]quinolizin-4-ium iodide, Scheme (3A), comp. No. (23). The latter compound when interacted with 3-methyl-1-phenyl-2,4-di[H]-3H-pyrazolin-5-one, Hydantoin (imidazol-2,5dione), 2-methyl-oxazol-5(4H)-one & Barbituric acid (tetra[H] pyrimidin-2,5-dione) in AcOH to afford 6-(3-methyl-1-phenyl-pyrazolin-5-one-4-yl)-3-methyl-1-phenyl-1,6a-di[H]pyrazolo[3,4a]pyrrolo [2,3-c] quinolizin-7-ium,6-(2,5-dioxo-imidazolidin-4-yl)-3-methyl-1-phenyl-1,6a-di[H] pyrazolo [3,4-a]pyrrolo[2,3-c] quinolizin-7-ium, 11-methyl-3-(2-methyl-5-oxo-4,5-di[H]-oxazol-4-yl)-9-phenyl-3a,9-di[H]-dipyrrolo[3,4-a:2',3'-c]quinolizin-4-ium-iodide & 6-(2,5-dioxohexa [H]pyrimidin-4-yl)-3-methyl-1-phenyl-1,6a-di[H]pyrazolo [3,4-a]pyrrolo [2,3-c]quinolizin-7-iumiodie, Scheme (3A), comp. No. (24A-D) respectively. Basic / acidic catalysis in EtOH/piperidine or AcOH of (24A-D) afforded self-assembly [ICT] functional dye, namely as, 3,11-Dimethyl-5,9-diphenyl-2a1,9-di[H]-5H-pyrazolo[4,3-b]pyrido[2,1,6-de]dipyrrolo[3,4-q:2', 3',4'-ij]quinolizin-12-ium-iodide,11-methyl-4-oxo-9-phenyl-2a1,2b,4,5,5a,9-hexa[H]-3Himidazo[4,5-b]pyrazolo[3,4-q] pyrido[2,1,6-de]pyrrolo[2,3,4-ij]quinolizin-12-ium,4,11-dimethyl-9-phenyl-2a1,9-di[H]oxazolo [4,5-b]pyrido [2, 1,6-de]dipyrrolo[3,4-g:2',3',4'-ij] quinolizin-12-

ium-iodide & 12-methyl-4-oxo-10-phenyl-2a1,3,4,5,6,10-hexa[H]pyrido[2,1,6de]pyrimido[4,5-b]dipyrrolo[3,4-g:2',3',4'-ij] quinolizin-13-ium-iodide Scheme (3A), comp. No. (25A-D) respectively. The interaction of Scheme (3A), comp. No. (22B) & 4-acetyl-1-phenylpyrazolin-5-one under AcOH followed by piperidine catalysis achieve & confirm the 3,11-dimethyl-5,9-diphenyl-2a1,9-di[H]-5H-pyrazolo[4,3-b] formation of pvrido[2.1.6de]dipyrrolo[3,4-g: 2',3',4'-ij] quinolizin-12-ium iodide Scheme (3A), comp. No. (25A). Piperidine catalysis of the interaction of (25A-D) & pyridin (quinolin)-4(1)-ium ethyl iodide salts, in equimolar amount, afforded 3.11-Dimethyl-5.9-diphenyl-5.9-di[H]-1H-dipyrazolo[4.3b:3',4'-g]pyrido[2,1,6-de] pyrrolo[2,3 ,4-ij]quinolizin-12-ium-zero-2[4]methine, 3,11-dimethyl-5,9-diphenyl-2a1,9-di[H]-5H-dipyrazolo[4,3-b:3',4'-g]pyrido[2,1,6-de]pyrrolo[2,3,4-ij]quinolizin-12-ium-zero-2[4]methine , 3,11-dimethyl-4-oxo-9-phenyl-2a1,4,5.9-tetra[H]-3H-imidazo[4,5b]Pyrazolo[3,4-g]pyrido [2,1,6-de] pyrrolo [2,3,4-ij]quinolizin-12-ium-zero-2[4]methine cyanine dyes Scheme (3A), comp. No. (26A-D) respectively. 5-(1-(Hydroxy- imino) ethyl)-3methyl-4-oxo-1-phenyl-4,5-di[H]-1H-pyrrolo[3,4-a]quinolizin-6-ium iodide, Scheme (3B),

GSJ: Volume 8, Issue 9, September 2020 ISSN 2320-9186

806

comp. No. (27) [8] was selected as a privileged precursor in acetic acid catalyzed with Scheme (3A), comp. No. (22C), in equimolar amount, afforded 5,5'-(2H-pyrrole-3,5-diyl)bis(3-methyl-4-oxo-1-phenyl-4,5-di[H]-1H-pyrazolo[3,4-a]quinolizin-6-ium) iodide, Scheme (3B), comp. No. (28). The interaction of (28) either with ethyl ortho-formate or formamide under piperidine catalysis or thermal condition, in equimolar amount, afforded 5-(4-(diethoxymethyl)-2H-pyrrole-3,5-diyl)bis(3-methyl-4-oxo-1-phenyl-4,5-di[H]-1H-

pyrazolo[3,4-a]quinolizin-6-ium) iodide, **Scheme (3B)**, comp. No. **(29A)** or 5-(4-(dichloromethyl)-2H-pyrrole-3,5-diyl)bis(3-methyl-4-oxo-1-phenyl-4,5-di[H]-1H-pyrazolo[3,4-a]quinolizin-6-ium) iodide **Scheme (3B)**, comp. No. **(29B)**. Hetero cyclization of the latter two compounds was conducted under piperidine catalysis to achieve 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-2,2b,3,6,9b,13,16,16a-octa[H] pyrazolo[4',3':8,9] quinolizino[4,5,6-ab]pyrrolo[4,3,2-de]pyrrolo [3',4':1,2]quinolizino [4, 5,6-gh] [2,7] naphthyridin-17,18-diium iodide **Scheme (3B)**, comp. No. **(30)**. The excess of piperidine catalysis on **(30)** causes either oxidative elimination **(-H₂)** or dehydroiodination **(-HI)** to afford self-assembly **[ICT]**functional dye, namely as, 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-1,2b,3,6, 13,16-hexa [H]Pyrazolo [4',3':8,9] quinolizino[4,5,6-ab]pyrrolo[4,3,2-de]pyrrolo [3',4':1,2] Quinolizino [4,5,6-ab]pyrrolo[4,3,2-de]pyrrolo [3',4':1,2] Quinolizino [4,5,6-ab]pyrrolo[4,3,16-dioxo-6,13-diphenyl-1,2b,3,6,13,16-hexa[H]-1H-pyrazolo[4',3':8,9]

quinolizino[4,5,6-ab] pyrrolo[4,3,2-de]pyrrolo[3',4':1,2]quinolizino[4,5,6-gh][2,7]naphthyridin-18-ium-iodide **Scheme (3B)**, comp. No. **(31B)**. Piperidine catalysis of the interaction of **(31A, B) &** pyridin (quinolin)-4(1)-ium ethyl iodide salts, in equimolar amount, afforded the corresponding self-assembly **[ICT]** functional dyes, namely as 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-2b,3,6,13,16,16a-hexa[H]-1H-pyrazolo [4',3':8,9] quinolizino [4,5,6-ab] pyrolo[4,3,2-de]pyrolo [3',4':1,2] Quinolizino [4,5,6-gh][2,7] naphthyridin-18-ium-iodide-zero-2[4]methine cyanine dyes **(32a-c), Scheme (3B)**.

The formation of **(24A)** was suggested to proceed via the converting of **scheme (3A)**, comp. No. **(23A)** from its keto form into corresponding enol form **(23B)**. The interaction between **(23B)** and 3-methyl-1-phenyl-pyrazolin-5-one undergo elimination of water molecule to form an intermediate (A) under acidic acid which converted into enol form (B). the later intermediate (B) undergo ring closer to form the desire 3,11-dimethyl-5,9-diphenyl-5,9-di[H]-1H-dipyrazolo[4,3-b:3',4'-g]pyrido[2,1,6-de]pyrrolo[2,3,4-ij]quinolizin-12-ium iodide, **Equation (1)**.

The structure of **Scheme (1A)**, Comp. No. (**2b**, **7b** & **9b**) was characterized and identified by elemental analysis and spectral analyses and Mass spectra data, **Table (6)**. Thus, FT-IR (ν^{KBr} cm⁻¹) of dyes (**2b**, **7a** & **9b**) showed in addition to general absorption bands at 1497 cm⁻¹ (ν , C=N), 1594 cm⁻¹ (ν , C=C),), 3400 cm⁻¹ (ν , OH), 2919-2921 cm⁻¹ (quaternary ylide iodide), well define absorption band at 1710 cm⁻¹ (ν , C=O), characteristic absorption band at 3557 cm⁻¹ (ν , CH-stretching) for **Scheme (1A)**, Comp. No. **2b**, 3457 cm⁻¹ (ν , spreading CH₂) for **Scheme (1A)**, Comp. No. **7b** [**12** & **13**]. The structure of **Scheme (1B)**, Comp. No. (**12**, **13**, **15**, **16a**, **16b** & **18** were characterized and identified by elemental analysis and spectral analyses and Mass spectra data, **Table (6)**, Thus, FT-IR (ν^{KBr} cm⁻¹) of **Scheme (1B)**, Comp. No. **12**, **13**, **15**, **16a**, **16b** & **18** showed in addition to the general absorption bands at 1497 cm⁻¹ (ν , C=N), 1592 cm⁻¹ (ν , C=C), 1704 cm⁻¹ (ν , C=O), well defined absorption band at 3058-3060 cm⁻¹ (ν , stretching CH), concomitant with the appearance of absorption bands at 1597 (ν , CH=CH), 2851-2923 (heterocyclic quaternary residue) for **Scheme (1B)**, Comp. No.**18**, and 2923 cm⁻¹ (ν , CH3-N+I),510-530 cm⁻¹ (M-O) for **Scheme (1B)**, Comp. No.**16a** &

16b, [12]. The structure of Scheme (2), Comp. No. 6, 7b, 9b & 10e was characterized and identified by elemental analysis, IR, ¹H-NMR and Mass spectral data, **Table 3**. Thus, IR v^{KBr} cm⁻¹) of **Scheme (2)**, Comp. No. **6** showed general frequency absorption bands at 3427 cm⁻¹ (v, OH of oxime), 2963 cm⁻¹ (v, heterocyclic guaternary salt), 1602 cm⁻¹ (v, C=C) conjugated, 1501 cm⁻¹ (ν , C=N), 750.174 cm⁻¹ (Ar.) IR (ν^{KBr} cm⁻¹) of **Scheme (2)**, Comp. No. **7b**, 3423.99 cm⁻¹ (ν , OH, oxime), 2967 cm⁻¹ (ν , heterocyclic quaternary salt), 1598 cm⁻¹ (ν , C=C) conjugated, 1494 cm⁻¹ (ν , C=N), 756.923 cm⁻¹ (ν , Ar.). The structure of **Scheme (3A &B)**. Comp. No. 22A-D, 23, 24A, 25A, 28, 29b and 30 was characterized and identified by elemental analysis, IR, ¹H-NMR and Mass spectral data, **Table (9)**. Thus, FT-IR (ν^{KBr} cm⁻¹) of Scheme (3A &B), Comp. No. 22A-D, 23, 24A, 25A, 28, 29b & 30 showed in addition to the general absorption bands at 1497 cm-1 (C=N), 1592 cm-1 (v, C=C), 1708 cm-1 (v, C=O), 3400 cm⁻¹ (ν , OH), the appearance of cyclic pyrazolino (ν , C=O, C=NH) at 1708 [12]. ¹H-NMR (DMSO, 400 MHz) spectra of Scheme (1B), Comp. No. (12, 13, 15, 18 & 16a) showed in addition to the general single and multiple signals at δ 1.19-1.29 (s, CH₃, of pyrazol), 2.20-2.32 (s, CH₃, of the other pyrazol), 7.16-7.97 (m, 13H, Ar. + Het. +NH) for Scheme (2), Comp. No. 12 &13, Well define signals at 3.21-3.32 (s, 2H, N-CH₂), 3.79 (s, 3H, CH₃-CH₂. N⁺I), 7.16-7.97 (m, 25H, Ar. + Het. +NH+CH=) for Scheme (1B), Comp. No. (15, 18 & 16a), [14, 15]. ¹H-NMR (DMSO, 400 MHz) spectra of Scheme (3A & B), Comp. No. 22A-D, 23, **24A & 28** showed in addition to the general single and multiple signals at δ 1.19-1.29 (s, CH₃, of pyrazol), 2.20-2.32 (s, CH₃, of the other pyrazol), 7.16-7.97 (m, 13H, Ar. + Het. +NH) for compound Scheme (3A & B), Comp. No. 22A & 22B, Well define signals at 3.21-3.32 (s, 2H, N-CH₂), 3.79 (s, 3H, CH₃-CH₂₋N⁺I), 7.16-7.97 (m, 25H, Ar. + Het. +NH+CH=) for Scheme (3A & B), Comp. No. 22d, 23,24A & 28, [14,15]. Mass Spectra (ESI-Ft-mass) of Scheme (1A), Comp. No. 2b & 7b. The structure of 2b was considered most likely and in agreement with molecular formula (C₂₂H₂₁IN₄O₂), resulted in m/z found=502.22313 (Calcd. 500. For [M]+) with an error ΔM =+2.22313ppm for Scheme (1A), Comp. No. 2b; Molecular formula (C₂₂H₁₉IN₄O) resulted in m/z found=484.17785 (Calcd. 482.213 For [M]+) with an error of ΔM =-2.17785 ppm for Scheme (1A), Comp. No. 7b; Molecular formula (C₂₄H₁₈CIIN₄O) resulted in m/z found =489.15980 (Calcd. 490.1201 [M]+) with an error of ΔM=-0.9612 ppm for Scheme (1A), Comp. No. 9a, [16]. Mass Spectra (ESI-Ft-mass) of Scheme (1B), Comp. No. (12, 13, 14a, 14b, 15, 16a & 16b). The structure of Scheme (1B), Comp. No. 12 was considered most likely and in agreement with molecular formula (C₁₆H₁₄N₂O₄), resulted in m/z found=299.13888 (Calcd. 298.0214 For [M]+) with an error Δ M=-1.11748 ppm; Molecular formula (C₂₁H₁₆ClN₃O₃) resulted in m/z found=281.09207 (Calcd. 280.213 For [M]+) with an error of Δ M=-0.87907 ppm for **Scheme (1B)**, Comp. No. 13; Molecular formula ($C_{16}H_{12}IN_2O_3$) resulted in m/z found=485.2175 (Calcd. 485.213 For [M]+) for Scheme (1B), Comp. No. 14a; Molecular formula (C₂₅H₁₈IN₃O₃) resulted in m/z found=433.18607 (Calcd. 435 For [M]+) with an error ΔM =-1.87698 ppm for Scheme (1B), Comp. No. 14b; Molecular formula (C22H19IN4O) resulted in m/z found =295.10844 (Calcd. 295 [M]+) with an error of ΔM =+0.10844 ppm for Scheme (1B), Comp. No. 15; Molecular formula ($C_{21}H_{14}IN_3O_3$) resulted in m/z found =470.25515 (Calcd. 483 [M]+) with an error of ΔM=-12.74485 ppm for compound Scheme (1B), Comp. No. 16a; Molecular formula $(C_{25}H_{16}IN_3O_3)$ resulted in m/z found =517.19875 (Calcd. 533 [M]+) with an error of ΔM =-15.80125 ppm for Scheme (1B), Comp. No. 16b, [17]. Mass spectra of Scheme (2), Comp. No. 9b agree with a molecular ion (base peaks) at m/z = 635 (m/z = 158) and 377 for 9b, [16]. Scheme (3A & 3B), Comp. No. (22A, B, D, 23, 24A, 28, 29B & 30). The structure of Scheme (3A), Comp. No. 22A was considered most likely and in agreement with molecular formula $(C_{16}H_{12}IN_{3}O)$, resulted in m/z found=391.17606 (Calcd. 389 For [M]+) with an error ΔM =+2.17606 ppm; Molecular formula $(C_{16}H_{13}IN_{4}O)$ resulted in m/z found=403.14084 (Calcd. 404.0012 For [M]-) with an error of ΔM =-0.86036 ppm for Scheme (3A), Comp. No. 22B; Molecular formula $(C_{19}H_{17}IN_{4}O_{2})$, resulted in m/z found=466.18674 (Calcd. 460 For [M]+) with an error ΔM =+6.18674 ppm for Scheme (3A), Comp. No. 22D; Molecular formula $(C_{21}H_{19}IN_{3}O)$, resulted in m/z found=466.15173 (Calcd. 456 For [M]-) with an error ΔM =+10.15173 ppm for Scheme (3A), Comp. No. 23; Molecular formula $(C_{29}H_{23}IN_{6}O)$, resulted in m/z found=596.20552 (Calcd. 598 For [M]+) with an error ΔM =-1.79448 ppm for Scheme (3A), Comp. No. 24A; Molecular formula $(C_{38}H_{29}I_{2}N_{7}O_{2})$, resulted in m/z found=862.24904 (Calcd. 869 For [M]+) with an error ΔM =-6.75096 ppm for Scheme (3B), Comp. No. 28; Molecular formula $(C_{39}H_{39}GI_{2}I_{2}N_{7}O)$, resulted in m/z found=952.39134 (Calcd. 950 For [M]+) with an error ΔM =+2.39134 ppm for Scheme (3B), Comp. No. 29B, [16].

COLOUR AND SPECTRAL BEHAVIOUR OF SOME SELECTED SELF-ASSEMBLY [ICT] & RELATED CYANINE DYES

The absorption spectra of Scheme (1A) comp. No. 6a-c, 8a,b & 10a-c in 95% ethanol showed absorption bands batho (hypso) chromically shifted depending upon the nature of heterocyclic A, heterocyclic quaternary residue A, their linkage position and the substituents R in the aza substituted- position (1,2 diaza, 1,4 diaza) cyanine dyes, Scheme (1A) comp. No. 6a-c, 8a,b & 10a-c. Thus, the visible absorption maxim of Scheme (1A) comp. No. 6a (A= indolizine, A` = pyridine-2-ium methiodide) showed (λ_{max} =418 & 514nm; ε_{max} =743 & 505 mol⁻¹cm²). Substitution of [A`= pyridine-2-ium methiodide] in Scheme (1A) comp. No. 6a by of (A'= quinoline-2-ium methiodide) in Scheme (1A) comp. No. 6b resulted in bathochromic shift of the shorter (longer) wavelength (λ_{max} = 394 nm; ϵ_{max} =366 mol⁻¹cm² & λ_{max} =504nm; ε_{max} =246 mol⁻¹cm²) of $\Delta\lambda_{max}$ =24 (10) nm, This can be attributed to the more extensive π-delocalization within quinoline-2-ium salt. Changing the linkage position of the pyridinium residue from 2-ium in Scheme (1A) comp. No. 6a to 4-ium in Scheme (1A) comp. No. **6c** causes bathochromic shift $\Delta \lambda_{max}$ =12nm. This is due to the increasing in the conjugation of the pyridinium in the 4-ium linkage relative to 2-ium analogue, this is due to the more extensive π - delocalization and extra conjugation in the quinoline ring. The visible absorb-maximum of Scheme (1A) comp. No. 8a [A= H-4-ium, B=H-4-ium] showed (λ_{max} =496 & 574 nm; ε_{max} =1800 & 1590 mol⁻¹cm²). Substitution of [A= H-4-ium, B=H-4-ium] in **Scheme** (1A) comp. No. 8a by [A= H-4-ium, B= C_4H_4 -4-ium] in Scheme (1A) comp. No. 8b exhibit $(\lambda_{max}=480 \text{ nm}; \epsilon_{max}=1970 \text{ mol}^{-1} \text{ cm}^2)$ resulted in bathochromic shift of $\Delta \lambda_{max}=94 \text{ nm}$. This is due to the more extensive π - delocalization and extra conjugation in the quinoline ring. The visible absorb-maximum of Scheme (1A) comp. No. 10a [A= H-4-ium, B=H-4-ium] showed $(\lambda_{max}=314 \& 510 \text{ nm}; \epsilon_{max}=1055 \& 212 \text{ mol}^{-1}\text{cm}^2)$. Substitution of [A= H-4-ium, B=H-4-ium] in dye **10a** by [A= H-4-ium, B= C₄H₄-4-ium] in dye **10b** exhibit (λ_{max} =390 & 522 nm; ε_{max} =339 & 235 mol⁻¹ cm²) resulted in bathochromic shift of $\Delta \lambda_{max}$ =12 nm. Substitution of [A= H-4-ium salt, B=H-4-ium salt] in dye 10a by [A (B) = H-4-ium salt, (C₄H₄-4-ium)] in Scheme (1A) comp. No. **10c** exhibit (λ_{max} =394 & 506 nm; ε_{max} =382 & 251 mol⁻¹cm²) resulted in bathochromic shift of $\Delta\lambda_{max}$ =80nm, this is due to the more extensive π - delocalization and extra conjugation in the quinoline ring, Table (1A,B). In point view of spectral behaviour, it was obvious that Scheme (1A) comp. No. (6a-c) absorbed fundamental light (Transmitted)

green (purple), yellow-green (violet) for Scheme (1A) comp. No. 8a, blue-green (red) for Scheme (1A) comp. No.8b & green (purple) for Scheme (1A) comp. No. 10a-c, Table (1A,B). The absorption spectra of Scheme (1B) comp. No. 16a,b, 19a,b, & 20a-c in 95% ethanol exhibited absorption bands batho (hypso) chromically shifted depending upon the nature of heterocyclic A, A`. Thus, the absorption spectra of Scheme (1B) comp. No. 16a [A = A` indolizine] showed (λ_{max} =390 & 504nm; ε_{max} =1276 & 660 mol⁻¹cm²). Substitution of [A =A` indolizine] in Scheme (1B) comp. No. 16a by [A =A` benzoindolizine] in Scheme (1B) comp. No. 16b causes hybthochromic shift of $\Delta \lambda_{max}$ =10nm accompanied with the appearance of new shoulder of absorption band at (λ_{max} =400nm; ε_{max} =709 mol⁻¹cm²). This due to the more extensive π -delocalisation within the extra phenyl ring in Scheme (1B) comp. No. 16b, Table 4. On comparison between the absorption spectra of dye 16a [A =A` bis pyrazolo (4,5-b) indolizine] and Scheme (1B) comp. No. 20a [A = A` bis pyrazolo (4,5-a) indolizine]. It was obvious that, the visible absorption spectra of Scheme (1B) comp. No. 20a showed hybthochromic shift of $\Delta \lambda_{max}$ =102 nm accompanied with the appearance of new absorption band at λ_{max} =390 nm relative to the Scheme (1B) comp. No. 16a. This may be attributed to the position linkage of two nitrogen atoms of the indolizine /indolizinium heterocyclic is closed to methine group leading to easier of the electron transferring from nitrogen atom towards the corresponding positive charge nitrogen atom in Scheme (1B) comp. No. 20a, Table (1A,B). The absorption spectra of Scheme (1B) comp. No. 19a [A = indolizine, A' = pyridine-2-ium methiodide] showed (λ_{max} =356nm; ε_{max} =829 mol⁻¹cm²). Substitution of [A' = pyridine-2-ium methiodide] in Scheme (1B) comp. No. 19a by [A' = quinoline-2-ium methiodide] in Scheme (1B) comp. No. 19b causes the appearance of new absorption bands at the shorter wavelength 306 nm concomitant with the disappearance of the old absorption band, due to the more extensive π -delocalisation within the quinoline moiety in Scheme (1B) comp. No. 19b, Table (1A, B). Additionally, substitution of (A = indolizine) in Scheme (1B) comp. No. 19a by (A = benzoindolizine) in Scheme (1B) comp. No. 20a resulted in bathochromic shift of the longer wavelength of $\Delta \lambda_{max}$ =146 nm concomitant with the appearance of new shoulder of absorption band at 492 nm. This may be attributed to the more extensive π -conjugation within in the extra phenyl ring. On comparison between the electronic absorption spectra of Scheme (1B) comp. No. 19b & **20b**, it was obvious that the appearance of new shoulder of absorption band at $\Delta \lambda_{max}$ =92 nm besides the other absorption bands, may be for the easier of electronic transfer occurs from the nitrogen atom heterocyclic N-indolizinium heterobicyclic to the nitrogen atom of heterocyclic residue, Table (1A, B). In point view of spectral behaviour, it was obvious that Scheme (1B) comp. No. 16(a & c) absorbed fundamental light (Transmitted) green (purple), violet (yellow-green) for Scheme (1B) comp. No. 16b, blue-green (red) for Scheme (1B) comp. No. 20a, yellow-green (violet) for Scheme (1B) comp. No. 20b & violet(yellow-green) for Scheme (1B) comp. No. 20c , Table (1A, B). The visible absorb-maximum of Scheme (2) comp. No. 9a [A= H-4-ium] showed (λ_{max} =460nm; ε_{max} =698 mol⁻¹cm²). Substitution of [A= H-4-ium] in Scheme (2) comp. No. 9a by $[A = C_4H_4$ -4-ium] in Scheme (2) comp. No. 9b exhibit (λ_{max} =498nm; ε_{max} =1010 mol⁻¹cm²) resulted in bathochromic shift of $\Delta\lambda_{max}$ =38nm. This is due to the more extensive π -delocalization and extra conjugation in C₄H₄-4-ium ring. The visible absorb-maximum of Scheme (2) comp. No. 10a [A= H-4-ium, B=H-4-ium] showed (λ_{max} =390 & 520 nm; ε_{max} =2700 & 2443 mol⁻¹ cm²). Substitution of [A= H-4ium, B=H-4-ium] in Scheme (2) comp. No. 10a by [A= H-4-ium, B= C_4H_4 -4-ium] in

Scheme (2) comp. No. **10b** exhibit (λ_{max} =480nm; ε_{max} =670mol⁻¹cm²) resulted in bathochromic shift of $\Delta \lambda_{max}$ =40nm. This is due to the more extensive π -delocalization and extra conjugation in the quinoline ring. Substitution of [A= H-4-ium salt, B=H-4ium salt] in Scheme (2) comp. No. 10a by [A (B) = H-4-ium salt, $(C_4H_4-4-ium)$] in **Scheme (2)** comp. No. **10c** exhibit (λ_{max} =500nm; ε_{max} =1780mol⁻¹cm²). Substitution of $[A (B) = H-4-ium, (C_4H_4-4-ium)]$ in Scheme (2) comp. No. 10c by $[A(B) = C_4H_4-4-ium,$ (H-4-ium)] in **Scheme (2)** comp. No. **10d** exhibit (λ_{max} =475nm; ε_{max} =612mol⁻¹cm²) resulted in hypsochromic shift of $\Delta \lambda_{max}$ =25nm. This is due to the less extensive π delocalization and less conjugation in C_4H_4 -4-ium ring. Substitution of [A (B)= C_4H_4 -4-ium, (H-4-ium)] in **Scheme (2)** comp. No. **10d** by $[A(B) = C_4H_4$ -4-ium, $(C_4H_4$ -4-ium)] in **Scheme (2)** comp. No. **10e** exhibit (λ_{max} =478nm; ε_{max} =1593mol⁻¹cm²) resulted in hypsochromic shift of $\Delta \lambda_{max}$ =3nm. This is due to the more extensive π - delocalization and extensive conjugation in C_4H_4 -4-ium ring. Substitution of [A (B)= C_4H_4 -4-ium, $(C_4H_4-4-ium)$] in **Scheme (2)** comp. No. **10e** by $[A(B) = C_4H_4-4-ium, (C_4H_4-1-ium)]$ in Scheme (2) comp. No. 10f exhibit (λ_{max} =474nm; ε_{max} =1012mol⁻¹cm²) resulted in hypsochromic shift of $\Delta \lambda_{max}$ =4nm. This is due to the less extensive π - delocalization and less conjugation in C₄H₄-1-ium ring. Bis-zero-methine Scheme (2) comp. No. 10af are bathochromic shift to Scheme (2) comp. No. 9a, b. This is due to extend of πdelocalization in case of bis zero methine cyanine dyes Scheme (2) comp. No. 10a-f. In point view of spectral behaviour, it was obvious that dyes (6a, b), absorbed fundamental light (Transmitted) green-blue (orange) for Scheme (2) comp. No. 6a, blue- green (red) for Scheme (2) comp. No. 6b, 8a, b, absorbed fundamental light (Transmitted) blue (Yellow) for Scheme (2) comp. No. 8a & blue-green (red) for Scheme (2) comp. No. 8b. (9a-e), absorbed fundamental light (Transmitted) green (Purple) for Scheme (2) comp. No. 9a, blue (Yellow) for Scheme (2) comp. No. 9b, blue-green (red) for Scheme (2) comp. No. 9c, blue (yellow) for Scheme (2) comp. No. 9d & blue (yellow) for Scheme (2) comp. No. 9e, Table (1A,B). The absorption spectra of Scheme (3A) comp. No. 26A-D and Scheme (3B) comp. No. 32a-c in 95% ethanol showed absorption bands batho (hypso) chromically shifted depending upon the nature of heterocyclic A, heterocyclic quaternary residue A', their linkage position and the substituents R in the aza mono substituted-tri-5/(8)[2(4)] methine cyanine dyes Scheme (3B) comp. No. 32a-c. Thus, the visible absorption maxim of dye **Scheme (3A)** comp. No. **26A** showed (λ_{max} =390nm; ε_{max} =755 mol⁻¹cm²). Substitution of [A` = pyridine-2-ium methiodide] in Scheme (3A) comp. No. 26a by of [A` = quinoline-2-ium methiodide] in dye 26b resulted in bathochromic shift of the longer wavelength of $\Delta\lambda_{max}$ =6nm. This can be attributed to the more extensive π -delocalization within quinoline-2ium salt, Table (1A,B). As was observed in the absorption spectra of Scheme (3A) comp. No. 26A-D, and the visible absorption maxim Scheme (3B) comp. No. 32a-c are influenced by the substituents in addition to the nature of heterocyclic A, heterocyclic quaternary residue A` and their linkage position, Table (1A,B). Thus, the visible absorption spectra of Scheme (3B) comp. No. 32a [A` = quinoline-2-ium methiodide, R =H] exhibited (λ_{max} =402nm; ε_{max} =322 mol⁻¹cm²). Substitution of [N-bridgehead unit] in **Scheme (3B)** comp. No. 32a versus Scheme (3A) comp. No. 26A causes hypsochromic shift of the longer wavelength of $\Delta\lambda_{max}$ =12nm concomitant with the decreasing number of absorption bands, Table. This may be attributed to decreasing of conjugation through the accepting ability of electron donating N-bridgehead unit system. In point view of spectral behaviour, it was obvious that **Scheme (3A)** comp. No. **26B** absorbed fundamental light (Transmitted) green (purple), green-blue (orange) for **Scheme (1A)** comp. No. **26D**, violet (yellow-green) for **Scheme (3B)** comp. No.**32a** & blue-green (red) for **Scheme (3B)** comp. No. **23c**, **Table (1A,B)**.

Solvatochromic Behaviour of Some Selected Self-assembly [ICT] & related Cyanine Dyes

Cyanine dyes had been useful in studying the colour of organic substances [17] and there are several fundamental principles exist that correlate origin of chemical structures colour of the solute as well as natures of solvents [18-21]. Moreover, these classes of self-assembly heterocyclic functional & related cyanine dyes are useful in various industrial field [22]. The colour changes of cyanine dyes with solvents (solvatochromism) was previously discussed by [23, 24 & 25] and extended [26] and his coworkers [27] to correlate the effect of structure on molecular orbital energy levels. It is clear that the substituent types and solvent polarity change the electron densities of such dyes. Solvatochromic dyes generally exhibit steady bathochromic (positive solvatochromism) or hypsochromic (negative solvatochromism) shifts in solvents of various polarities. Self-assembly heterocyclic functional & related cyanine dyes are also ascribed a large change in dipole moment upon excitation due to the relative contribution of both dipolar zwitterionic benzenoid and neutral quinoid forms [29-31] Therefore, such dyes have been used by various workers to establish empirical relationships of solvent polarity. The solvatochromism is caused by differential solvation of ground and Franck-Condon excited state, due to the absorption of electromagnetic radiation in UV-VIS region. If the ground state is more stabilized than excited state due to solvation by solvents of increasing polarity, negative solvatochromism is exhibited and vice versa. According to the Franck-Condon principle [32] the time required for molecules to be exited is much smaller than that required to execute vibration or rotation. Therefore, the first excited state of the molecule in solution, called the Franck-Condon excited state, has the same solvation pattern as in the ground state, called the equilibrium ground state. The first Franck-Condon excited state is much more dipolar than the ground state due to intramolecular charge transfer upon excitation. Stabilization of the Franck-Condon excited state before and after relaxation to the equilibrium excited state and the destabilization of the Frank-Condon ground state relative to the equilibrium ground state by differential solvation leads to the positive solvatochromism. Positive solvato chromism is more sensitive to changes in solvent polarity than the corresponding absorption band in suitable cases. From these finding points of view, the visible absorption spectra of some selected of newly synthesized cyanine dyes are discussed. The absorption spectra of the cited cyanine dyes, Scheme (1A) comp. No. (6a-c, 8a-c, 9b & 10a-c). Scheme (1B). comp. No. (16a-c, 19a-c & 20a-c), Scheme (3A), comp. No.26A-D and Scheme (3B), comp. No. (32a-c) in the wavelength range 250-700 nm, have been studied in different organic solvents (H₂O, DMF, DMSO, EtOH, MeOH, acetone, CHCl₃, and C₆H₆) [33]. respectively. The colour changes of these dyes with solvents having different polarities are presented in Tables (2A-D). In point view of the absorption spectra of dyes, Scheme (1A), comp. No. 6a-c in nonpolar organic solvent, (benzene), it was obvious that they absorbed the fundamental light absorption (violet), as it has got absorption value at (λ_{max} =404nm; $\epsilon_{max}=266 \text{ mol}^{-1}\text{cm}^2$) for **Scheme (1A)**, comp. No. **6a**, ($\lambda_{max}=408$ nm; $\epsilon_{max}=424$ mol $^{-1}$ cm 2) for Scheme (1A), comp. No. 6b and (λ_{max} =402nm; ε_{max} =920 mol⁻¹cm²) for Scheme (1A), comp.

No. 6c as was obvious in EtOH absorption value, the absorbed fundamental light absorption (mainting colour) (violet) with bathochromic shift with respect to EtOH, Tables (2A-D). In point view of the absorption spectra of dyes, Scheme (1A), comp. No. 8a,b in polar organic solvent. (DMSO), it was obvious that they absorbed the fundamental light absorption yellowgreen(green), as they has got absorption value at (λ_{max} =582nm; ϵ_{max} =280 mol⁻¹cm²) for Scheme (1A), comp. No. 8a and (λ_{max} =510nm; ε_{max} =229 mol⁻¹cm²) for Scheme (1A), comp. No. **8b.**, containment with bathochromic shift by $\Delta\lambda_{max}$ =182(116)nm with respect to EtOH, in (CHCl₃) absorbed fundamental light absorption (yellow), as they has got absorption value at $(\lambda_{max}=408$ nm; $\epsilon_{max}=599$ mol⁻¹ cm²) for **Scheme (1A)**, comp. No. **8a** and $(\lambda_{max}=408$ nm; ε_{max} =959 mol⁻¹cm²) for Scheme (1A), comp. No. 8b., containment with bathochromic shift by $\Delta\lambda_{max}$ =8(8)nm with respect to EtOH, , in (DMF) absorbed fundamental light absorption yellow-green(green), as they has got absorption value at (λ_{max} =578nm; ϵ_{max} =216 mol⁻¹cm²) for Scheme (1A), comp. No. 8a and $(\lambda_{max}=512 \text{ nm}; \epsilon_{max}=193 \text{ mol}^{-1} \text{ cm}^2)$ for Scheme (1A), comp. No. **8b.**, containment with bathochromic shift by $\Delta\lambda_{max}=8(8)$ nm with respect to EtOH, Tables (2A-D). It is clear from data that λmax of the intramolecular charge transfer absorption bands exhibit a marked bathochromic on transfer from nonpolar to polar solvents (positive solvatochromism), and some exhibits a hypsochromic of absorption bands with increasing solvent polarity (negative solvatochromism). The unexpected blue shift observed in the λ max of such cyanine dye in EtOH & water may be due to strong electrostatic interaction [H-bonding] of solvent that cause hypsochromic shift of λ max. Specific solvation of dyes occurs as a result of electrostatic interaction of the distributed cationic charges with the dipoles of solvated molecules. In point view of the spectral behavior of water they absorbed the fundamental light absorption (blue green), as it has absorption value at $(\lambda_{max}=490$ nm; $\varepsilon_{max}=217$ mol⁻¹ cm²) for **Scheme (1A)**, comp. No. **8a** and $(\lambda_{max}=496$ nm; ε_{max} =216 mol⁻¹cm²) for Scheme (1A), comp. No. 8b containment with hypsochromic shift by $\Delta\lambda_{max}$ =84(6) nm with respect to EtOH. The unexpected hypsochromic shift in the absorption spectral maxima in water compared to polar organic solvents and its lower extinction coefficients. This is due to the ease of interactions of water molecules, through intermolecular hydrogen bonding, with the lone pair of electrons on the nitrogen atom of the heterocyclic cyanine dyes, in addition to, intermolecular hydrogen bonding of water molecules on oxygen atom of the two carbonyl groups, through intermolecular hydrogen bonding, which intern preclude the charge transfer from the heterocyclic ring system to the positively charged residue along the conjugated bridge causing antagonistic effect. Moreover, the intermolecular hydrogen bonding between CHCI3 molecules and the lone pair of electrons of nitrogen atoms of the heterocyclic ring system is difficult due to the steric hindrance of the three bulk chlorines. Moreover, the solute solvent interactions in cases of CHCl3, generated a residual negative charge on the nitrogen atoms of the heterocyclic ring system which intern facilitated the electronic charge transfer to the positively charged center and this explain the bathochromic shifts in these solvents relative to water, Tables (2A-D). In point view of the absorption spectra of dyes, Scheme (1A), comp. No. 8a & 8b in nonpolar organic solvent, In benzene, it was obvious that they absorb the fundamental light absorption (violet) as it has got absorption value (λ_{max} =414nm; ϵ_{max} =286 mol⁻¹cm²) for Scheme (1A), comp. No. 8a and (λ_{max} =410nm; ε_{max} =393 mol⁻¹cm²) for Scheme (1A), comp. No. 8b, as was obvious in EtOH, they absorbed fundamental light absorption (mainting colour) (violet) concomitant with hypochromic shift with respect to EtOH, Tables (2A-D). Dyes, Scheme (2B), comp. No. 16a-c & comp. No. 19a-c & Scheme (2B), comp. No. 20ac, absorbed violet light in EtOH, CHCl₃, and MeOH λ_{max} = 400-450 nm extended and improved to the absorption of green light in DMF and acetone λ_{max} = 500-580 nm. The visible absorption spectra of zero-1[4] methine & bis-zero-methine cyanine dyes, Scheme (2), comp. No. 9b & 10e in the wavelength range 400-700 nm, have been studied in different organic solvents (H₂O, DMF, EtOH, acetone, CCl₄, CHCl₃ & C₆H₆). The colour changes of these dyes with solvents having different polarities. This is constructed with the intention to illustrate the solvatochromic behaviour of these dyes (λ_{max} and ϵ_{max}) values of the intramolecular charge transfer bands are given in Tables (2A-D). These dyes are showed positive solvatochromism with increased solvent polarity, which depend on the structure and the type of dye. Also, Scheme (3A) comp. No. 26A-D and Scheme (3B), comp. No. 32a-c absorbed near violet light in EtOH, benzene, CHCl₃, CCl₄ and MeOH λ_{max} = 360-420 nm extended and improved to the absorption of green light in DMF and acetone $\lambda_{max} = 520-575$ nm. Dye, Scheme (3A), comp. No 26B, absorbed violet light in EtOH, benzene, CHCl₃, and MeOH λ_{max} 400-406 nm extended and improved to the absorption of green light in DMF and DMSO λ_{max} = 514-516 nm. Finally, Scheme (2B), comp. No. 32a-c absororbed violet light in EtOH, benzene, CHCl₃, and MeOH λ_{max} = 400-410 nm extended and improved to the absorption of green light DMF and DMSO λ_{max} =512 nm, Tables (2A-D).

<u>Media chromic and Covalent Hydration of Some Selected Self-assembly [ICT] &</u> <u>related Cyanine Dyes in Aqueous Universal Buffer Solutions</u>

Some selected dyes exhibit highly coloured in the ethanol acidic-medium discharged on basification. This may be due to "Covalent hydration in aqueous solution. It is not surprising to find that the acidic ethanolic solution of N-bridge head hetero-tri(tetra) cyclic and/or fused benzo heterobicyclic moieties substituted with strong electron withdrawing groups (C=NH, C= O) as in dyes (12a, 14b, 20b) give deeping colour solution and discharge on basification in aqueous solution) showed "4-amino pyridinium and/or amidine types resonance "Covalent hydration " in aqueous solution or in dyes. On the other hand, the existence of benzpyrido-NH group as electron donor supplements the directing effect of (C=NH) imino-nitrogen (C=O) and direct the incoming proton of an aqueous medium into such groups leading to a stabilized covalent hydration through the mesomeric effects of either 4-amino-pyridinium or amidinium types resonance. This phenomenon was studied through dye 14a, and the resonance stabilization and the bathochromic shift as the pH of the medium increases. In aqueous solution (highly coloured solution) is due to an electron charge transfer in conjugated mesomeric structures from N-bridge head heterocyclic moiety iminium/ hydroxnium cations moieties as an electron charge transfer in conjugated mesomeric structures. The absorption spectra of Scheme (1A), comp. No. (6a-c, 8a-c, 9a-c &10a-c) in aqueous universal buffer solution of different values of pH (1.92, 2.20, 4.19, 5.96, 6.97, 8.04, 10.25, 12.00) show regular changes with increasing the pH of the medium especially in the $n-\pi^*$ and CT bands Tables (3A-B). Also, the spectra of the selected cyanine dyes in aqueous universal buffer solutions of varying pH values showed bathochromic shifts with intensification of the absorption bands at high pH values (alkaline media), otherwise, hypsochromic shifts with quenching the intensity of the absorption bands at low pH values (acidic media) were recorded. Moreover, increasing the pH values of the medium intensified the electronic charge transfer due to deprotonation which intern support the lone pairs of electrons of the heterocyclic ring system and increase its mobility. In the other hand, decreasing pH values of the medium interrupted the charge transfer due to protonation and intermolecular hydrogen bonding which intern preclude the availability of the lone pairs of the heterocyclic ring system. The spectral behaviour of Scheme (1A), comp. No. (6a-c, 8a-c, 9a-c & 10a-c) in 95% ethanol and/or in aqueous universal buffer solution showed that these compounds absorbed the blue light λ_{max} = 435-480 nm and the near blue-green light extended to the green light λ_{max} = 490-500 nm. In acid (pH ≥ 2.20) medium these dyes undergo a hypsochromic colour change due to the protonation of the heterocyclic nitrogen atom (oxygen) or the heterocyclic nitrogen atom of heterocyclic quaternary salts (quinolin-2-/ pyridin-4-) ium salts and other non-quaternize N-methyl (quinolin-2-/pyridin-4-) ium. In such cases the intramolecular charge transfer (CT) between the heterocyclic donor nitrogen (oxygen) and the heterocyclic acceptor nitrogen atoms does not occur, and the long wave length CT band disappears. A new short wave length band is observed, which could be assigned to a localized $\pi - \pi^*$ transition. On the other hand, the resulted bathochromic shift as the pH of the medium increases is due to that the protonated compounds becomes deprotonated and their mesomeric interaction with the rest of the molecule becomes high and consequently the CT interaction with the free base is facilitated, **Tables (3A,B).** The pKa values were obtained using the standard procedure [34], the pKa values and spectral characteristics of the protonated forms of dyes are collected in Tables (3C, D). Thus, it was suggested that these dyes are sensitive as photosensitizers in both acidic and basic mediums. This may be due to the presence of N-methyl guinolin-2-/ pyridin-4- linkage and the other guinolin-2-/ pyridin-4-ium salts causing the high planarity of the dye molecule. The ethanolic solution of some selected synthesized 12-methyl-4-oxo-10-phenyl-2a1,3,4,5,6,10hexa[H]Pyrazolo [4,3-b]pyrido[2,1,6-de]pyrimido [5,4-g]pyrrolo [4,3,2-ij]quinolizin-13-iumzero-2[4]Methine cyanine dyes Scheme (3A), comp. No. 26A-D, and 4,15-dimethyl-3,16dioxo-6,13-diphenyl-2b, 3, 6, 13,16,16a-hexa[H]-1H-Pyrazolo[4',3':8,9]quinolizino[4,5,6ab]pyrrolo[4,3,2-de] pyrrolo [3',4': 1,2]quinolizino [4,5,6-gh] [2,7] naphthyridin-18-ium iodidezero-2[4]methine cyanine dyes, Scheme (3B), comp. No. (32a-c) give a permanent colour in basic medium which is discharged on acidification. This promoted us to study their spectral behaviour in different aqueous universal buffer solution in order to ensure optimal pH in the application of these dyes as photosensitizers and determine their pKa values too. The effectiveness of the compounds as photosensitizers increases when they are present in the ionic forms (non-protonated form) which have higher planarity [35]. The absorption spectra of selected cyanine dyes Scheme (3A), comp. No.(26A-D) & Scheme (3B), comp. No. (32a-c) in aqueous universal buffer solution of different values of pH (1.92, 2.20, 4.19, 5.96, 6.97, 8.04, 10.25, 12.00) show regular changes with increasing the pH of the medium especially in the n- π^* and CT bands **Tables (3C, D).** The spectra of selected cyanine dyes in aqueous universal buffer solutions of varying pH values showed bathochromic shifts with intensification of the absorption bands at high pH values (alkaline media), otherwise, hypsochromic shifts with quenching the intensity of the absorption bands at low pH values (acidic media) were recorded. Moreover, increasing the pH values of medium intensified the electronic charge transfer due to deprotonation which intern support the lone pairs of electrons of the heterocyclic ring system and increase its mobility. In the other hand, decreasing pH values of the medium interrupted the charge transfer due to protonation and intermolecular hydrogen bonding which intern preclude the availability of the lone pairs of the heterocyclic ring system. Several methods had been adopted for spectrophotometric estimation of the dissociation constants of weak acids, the variation of absorbance at settled wavelength could be utilized. Thus, on plotting the absorbance at settled wave number versus pH values, S-shaped curves were obtained. For all S-shaped curves, the horizontal portion to the left corresponded to the acidic form of the indicator, while the upper portion to the right corresponded to the basic form since the pKa value was defined as the pH value for which one half of the indicator (dve) is in the basic form and the other half in the acidic

form. This point, (pKa value), was determined by the intersection of the S-curve with horizontal line midway between the left and right segments [36] Tables (3C, D). The spectral behaviour of Scheme (3A), comp. No. (26A-D) & Scheme (3B), comp. No. (32a-c) in 95% ethanol and/or in aqueous universal buffer solution showed that these compounds absorbed the blue light $\lambda_{max} = 360-420$ nm and the near violet light extended to the green light $\lambda_{max} =$ 520-575 nm. Such dyes in aqueous universal buffer solution reveals absorption of the violet light at pH = 2.09 with hypsochromic and bathochromic shifted in the absorption of blue light and blue-green light at pH \geq 7.0 relative to ethanol. The hypsochromic shift of the violet light at pH = 2.09 is due to the presence of quinolinium methiodide as strong inductively group which increase to some extent the indolizine type resonance causes the protonation of indolizing nitrogen atom in such solution of low pH value and therefore the interaction is inhibited and the protonated form does not absorb energy in the visible region. On the other hand, the resulted bathochromic shift as the pH of the medium increases is due to the fact that the protonated compound becomes deprotonated and therefore its mesomeric interaction with the rest of the molecule becomes high and consequently the CT interaction within the free base is facilitated, Several methods had been adopted for spectrophotometric estimation of the dissociation constants of weak acids; the variation of absorbance at settled wavelength could be utilized. Thus, on plotting the absorbance at settled wave number versus pH values, S-shaped curves were obtained. For all S-shaped curves, the horizontal portion to the left corresponded to the acidic form of the indicator, while the upper portion to the right corresponded to the basic form since the pKa value was defined as the pH value for which one half of the indicator (dye) is in the basic form and the other half in the acidic form. This point, (pKa value), was determined by the intersection of the S-curve with horizontal line midway between the left and right segments [36] Tables (3C, D). The determination of pKa values of Scheme (3A), comp. No. (26A-D) & Scheme (3A), comp. No. (32a-c), Tables (3C, D). The results showed that the pKa values of these compounds depend upon the nature of such cyanine dye type which contains guinolinium heterocyclic guaternary residue in position -3- reveals pKa. These results were suggested that these dyes are more sensitive as photosensitizers in both acidic and basic mediums. The ethanolic solution of some selected newly synthesized 3-(1-ethylpyridin-4(1H)-ylidene)-2-(3-methyl-5-oxo-1-phenyl-1,5di[H]-4H-pyrazol-4-ylidene)-2,3-di[H]-1H-pyrido[3,2 ,1-ij]cinnolin-10-ium chloride methine cyanine dyes (6a-c), 1-(1-ethyl pyridin-4(1H)-ylidene)-2-(3-methyl-5-oxo-1-phenyl-1,5- di[H]-4H-pyrazol-4-ylidene)-1,2,3,4-tetra [H]-pyrazino [1,2-a]quinolin-11-ium cyanine dyes (8a-c), the visible absorption maxim of 3.11-dimethyl-1-phenyl-1H-pyrazolo [4'.3':5.6]pyrano[4.3e]pyrido [1,2-a] pyrazine-10,12-diium chloride iodide cyanine dyes (9a-c), 3-methyl-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-a]pyrido [1',2':4,5] pyrazino[2,3-c] quinolizine-10,11-diium iodide cyanine dyes (10a-c), Tables (3C, D). Thus, such self-assembly [ICT] Heterocyclic functional and related Cyanine dyes in Scheme (1A), comp. No. (6a-c, 8a-c, 9a-c & 10ac), Scheme (3A&B), comp. No. (26A-D & 32a-c) was suggested to be used as DSSCs especially in both aqueous media acidic or basic properties. Some heteroaromatic molecular are known to undergo "covalent hydration" reactions in aqueous solutions [8, 40 & 41]. Recognition of the existance of covalent hydration in solution has allowed otherwise puzzling chemistry to become under stainable. The presence of strong electron withdrawing in compound (23, 28, 30, 31A,B) causes the increasing of the resonance type of such heteroaromatic, consequently supplement and increased the electron density on the heterocyclic annual nitrogen which easily direct the incoming proton of the aqueous media into this site reactivity leading to the stabilized covalent hydration phenomenon. Thus, it was obvious that the acidic ethanol solution of such compounds give a permanent colour (deepening in colour) & discharge on basification. This is due to the suggested covalent hydration phenomenon or converting from keto form into their enol form causing internal charge transfer **[ICT]**. Such phenomenon was occurred in aqueous media, thus concerning **[ICT]** Dyes, **Scheme (3A)**, comp. No. **(23)** & **Scheme (3A)**, comp. No. **(28, 30 & 31A,B)** that the stability of Enolate **[ICT]**¹ Dye 10B is due to an internal charge transfer from hetero atom of pyrrol NH as electron source via10 anticlockwise extended conjugation bonds towards quinolizinium iodide salt more than **[ICT]**² via 8 clockwise extended conjugation analogous. Meanwhile, the stability of **[ICT]**¹ Dye **(30)** is due to an internal charge transfer from pyrrol NH as electron source via 12 anticlockwise extended conjugation bonds towards quinolizinium iodide salt more than **[ICT]**² via 8 clockwise extended conjugation analogous. In point of view of covalent hydration of self-assembly **[ICT]** Heterocyclic Functional Dyes, it was suggested to be used as Dyes Sensitizer Solar Cell **[DSSCs]**.

Molecular Modeling Studies Density Functional Theory (DFT) Calculations

Equilibrium molecular geometries of dyes Scheme (3A&b), comp. No. 25A, 26E and 32b were calculated using density functional theory (DFT) utilizing the energy functional Becke3-Lee-Yang-Parr hybrid (B3LYP) over the parameter SDD basis set. The solvent effect was neglected, implemented in Gaussian 09 [37], and the electron cloud delocalization included HOMO/LUMO levels of dyes, Scheme (3A&B), comp. No. (25A, 26E & 32b) were studied by DFT using Gaussian 09 software. All DFT jobs were submitted remotely at the normal computer. The quantum calculations (DFT) are considered to be one of the most reliable computational approaches in the field of chemistry. These calculations are applied to calculate the ground state geometries and excitation energies for dyes, Scheme (3A&b), comp. No. (25A, 26E & 32b). The Kohn–Sham density functional theory (DFT) calculations were done to evaluate the ground state properties of the organic dye molecules using Becke3-Lee-Yang-Parr hybrid functional (B3LYP) over the parameter SDD basis set. The optimized structures of the dyes were depicted in Fig. (1A, B), and achieved an effective charge separation in HOMO-LUMO energy levels as depicted in Fig. (2). As expected, in their Highest occupied molecular orbitals (HOMO) levels, the electron cloud is predominantly localized on both pyrazolo and the fused pyrido-quinolizinium rings (donor part) for all dyes. Conversely, at their lowest unoccupied molecular orbitals (LUMO) levels, the electron cloud is shifted clearly from the electron donor to the electron acceptor (quinolinium) ring in case of dye (26E) and to the pyrazolo and carbonyl group of the other side of dye, Scheme (3A&b), comp. No. 32b in different extent due to their varied electron accepting nature as shown in Fig. (1C).

Fig (1A) Chemical Strucures (25A, 26E & 32b) under DFT Calculation

Fig. (1C) simulated molecular orbitals energy levels (HOMO/LUMO) of dyes, Scheme (3A&b), comp. No. 25A, 26E & 32b.

The theoretical energy gab (E_{0-0}) values for dyes, **Scheme (3A&b)**, comp. No. **26E & 32b** along with their HOMO/LUMO energy levels have been tabulated in **Table (4)**. From the theoretical energy gab (E_{0-0}) values, it was obvious that, dye, **Scheme (3A&b)**, comp. No.

26E achieved higher E_{0-0} =1.3092 compared to E_{0-0} =0.6591 for dye **Scheme (3A&b)**, comp. **32b**. The energy gap decreased in dye, **Scheme (3A&b)**, comp. No. **32b** compared to dye, **Scheme (3A&b)**, comp. No. **26E**, this is attributed to dye **32b** achieved an extended π bridge length over the dye molecule compared to dye **26E** and this explains the great influence of π -bridge length on the excitation energy of the dyes (E_{0-0}) and maximum absorption wavelength values of the dyes **[38]**.

Experimental

All melting points are uncorrected Elemental analysis was carried out at the Micro analytical center (Cairo-University). The IR (vKBr) spectra were determined with Perkin Elmer Infrared 127ß spectrophotometer (Cairo-University). ¹H–NMR spectra were recorded with a Bruker AMX-250 spectrometer. Mass spectra were recorded on an Hp Ms 6988 spectrometer (Cairo University). The absorption spectra were carried out on a high resolution mass spectrometer - the Thermo Fisher Scientific Exactive Plus MS, a benchtop full-scan Orbitrap[™] mass spectrometer - using Heated Electrospray Ionization (HESI), the Molecular Education, Technology, and Research Innovation Center (METRIC) at NC State University. Privileged precursors pyridinium iodide derivative of 4-acetyl-1-phenyl-pyrazol-5-one /5-oxime (1A) were prepared as was described in prospective references [10 & 11]. 5-(1-(Hydroxy-iminoethyl)-3-methyl-4-oxo-1-phenyl-4,5-di[H]-1H-pyrrolo[3,4-a]quinolizin-6-ium-iodide (22C & 27) was prepared as was described in prospective reference [8]. All melting points are uncorrected Elemental analysis was carried out at the Micro analytical center (Cairo-University). The IR (v KBr) spectra were determined with Perkin Elmer Infrared 127ß spectrophotometer (Cairo-University). ¹H-NMR spectra were recorded with a Bruker AMX-250 spectrometer. Mass spectra were recorded on an HpMs 6988 spectrometer (Cairo University). The absorption spectra were recorded immediately after preparation of the solutions within the wavelength range (350-700) on 6405 UV/Visible recording spectrophotometer, Faculty of Science, Aswan. 1-ethyl-4-(2-(hydroxyi-mino)-2-(3-methyl-1phenyl-4,5-di[H]-1H-pyrazol-5-imine-4-yl-ethyl-quinolin-1-ium iodide Scheme(2), Comp. No. 6, 4-acetyl-oximino-3-methyl-1-phenyl-2-pyrazolin-5-one Scheme (1A) Comp. No. 1 & 4acetoacetyl-3-methyl-1-phenyl-2-pyrazolin-5-one Scheme (1B), Comp. No. 11 were prepared in way similar to that described in prospective reference [8, 9, 34].

Synthesis of 1-(2-(hydroxyimino)-2-(3-methyl-5-oxo-1-phenyl-4,5- di[H]-1H-pyrazol-4yl)ethyl)-2-methylpyridin-1-ium iodide, Scheme (1A), comp. No. (2a-c).

An Ethanolic mixture of **Scheme (1A)**, comp. No. (**1**, 0.01mol) and 2- methyl pyridine and/or 2- methyl quinoline (0.01mol) was refluxed for 3 hrs in few drops of piperidine. The reaction mixture was filtrated from unreacted materials. The filtrate was concentrated, cooled and acidified with acetic acid. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol. **Scheme (1A)**, comp. No. **(2a-c)**, **Table (6)**.

Synthesis of 8-hydroxy-1-((1-(3-methyl-5-oxo-1-phenyl-4,5-di[H]-1H-pyrazol-4-yl) ethylidene)amino)quinolin-1-ium chloride, Scheme (1A), comp. No. (4).

An ethanolic mixture of **Scheme (1A)**, comp. No. (**1**, 0.01mol) and quinolin-8-ol (0.01mol) was refluxed for 3 hrs in few drops of HCI. The reaction mixture was filtrated from unreacted materials. The filtrate was concentrated, cooled and acidified with acetic acid. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol, **Scheme (1A)**, comp. No. **(4)**, **Table (6)**.

Synthesis of 2-(3-methyl-5-oxo-1-phenyl-4,5-di[H]-1H-pyrazol-4-yl)-1H-pyrido[3,2,1-ij] cinnolin-10-ium chloride Scheme (1A), comp. No. (5).

Synthesis 3-(1-ethylpyridin-4(1H)-ylidene)-2-(3-methyl-5-oxo-1-phenyl-1,5-di[H]-4Hpyrazol-4-ylidene)-2,3-dihydro-1H-pyrido [3, 2, 1-ij]cinnolin-10-ium chloride Scheme (1A), comp. No. (6a-c).

An ethanolic mixture of **Scheme (1A)**, comp. No. **(5)** & pyridinum-ethiodide salts (0.01 mole) in piperidine (1-2 ml) was refluxed for 6 hrs where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtered, washed several times with water, dried and crystallized from ethanol to give **Scheme (1A)**, comp. No. **(6a-c)**, **Table (5)**.

Synthesis of 3-(3-methyl-5-oxo-1-phenyl-1, 5-di [H]-4H-pyrazol-4-ylidene)-1, 2, 3, 4tetra[H]pyrido [1, 2-a] pyrazin-5-ium iodide Scheme (1A), comp. No. (7a-c).

An ethanolic solution of product **Scheme (1A)**, comp. No. **(2a-c)**, (0.01 mole) pyridine and (0.01 mole) from lodine was refluxed for 3 hrs where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtered, washed several times with water, dried and crystallized from ethanol to give **Scheme (1A)**, comp. No. **(7a-c)**, **Table (6)**.

Synthesis of 1-(1-ethylpyridin-4(1H)-ylidene)-2-(3-methyl-5-oxo-1-phenyl-1,5-di[H-4Hpyrazol-4-ylidene)-1,2,3,4-tetrahydropyrazino [1,2-a]quinolin-11-ium Scheme (1A), comp. No. (8a-c).

An ethanolic mixture of **Scheme (1A)**, comp. No. **(7a-c)** and pyridinum-ethiodide salts (0.01 mole) in piperidine (1-2 ml) was refluxed for 6 hrs where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtered, washed several times with water, dried and crystallized from ethanol to give **Scheme (1A)**, comp. No. **(8a-c)**, **Table (6)**.

Synthesis of 3,11-dimethyl-1-phenyl-1H-pyrazolo [4',3':5,6] pyrano [4,3-e]pyrido[1,2-a] pyrazine-10,12-diium chloride iodide Scheme (1A), comp. No. (9a-c).

An ethanolic mixture of **Scheme (1A)**, comp. No. **(8a-c)** in acetic anhydride and then in ethanol in the presence of few drops of conc. HCl was refluxed for 3 hrs where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtered, washed several times with water, dried and crystallized from ethanol to give **Scheme (1A)**, comp. No. **(9a-c)**, **Table (5)**.

Synthesis of 3-methyl-1-phenyl-4,5-di[H]-1H-pyrazolo[3,4-a] pyrido [1',2' :4,5] pyrazino [2,3-c]quinolizine-10,11-diium iodide Scheme (1A), comp. No. (10a-c).

An ethanolic solution of **Scheme (1A)**, comp. No. **(7a-c, 0.01 mole)**, (0.01 mole) pyridine and (0.01 mole) from lodine was refluxed for 3 hrs where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtered, washed

several times with water, dried and crystallized from ethanol to give **Scheme (1A)**, comp. No. **(10a-c)**, **Table (5)**.

Synthesis of 3-(3-methyl-5-oxo-1-phenyl-4, 5-di[H]-1H-pyrazole-4-carbonyl)-4-oxopent-2-enal Scheme (1B), comp. No. (12).

An Acidic solution of **Scheme (1B)**, comp. No. (**11**, **glyoxal** 0.01mol.) in AcOH was refluxed for 1-2 hrs. The reaction mixture was filtrated hot from unreacted materials. The filtrate concentrated, cooled and precipitated by addition of cold water, filtrated and crystallized from ethanol, **Scheme (1B)**, comp. No. (**12)**, **Table (6)**.

Synthesis of 5-acetyl-3-methyl-1-phenyl-1H-indazole-4, 7-dione Scheme (1B), comp. No. (13).

An Ethanolic solution of **Scheme (1B)**, comp. No. (**12**, 0.01mole) in few drops of piperidine was refluxed for 3 hrs; the reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid to neutralize the excess of piperidine. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (1B)**, comp. No. **(13)**, **Table (6)**.

Synthesis of 1-(2-(3-methyl-4,7-dioxo-1-phenyl-4,7-di[H]-1H-indazol-5-yl)-2-oxoethyl) pyridin-1-ium iodide, Scheme (1B), comp. No. (14a-c).

An ethanolic solution of **Scheme (1B)**, comp. No. **(13)** (0.01mole) and (0.01mole) of pyridine and (0.01 mole) from lodine were refluxed for 4 hrs the reaction mixture was filtrated hot from unreacted materials. The filtrate was concentrated, cooled and the precipitated products after dilution with water were separated, filtrated, crystallized to give **Scheme (1B)**, comp. No. **(14a-c)**, **Table (8)**.

Synthesis of 5-(1-(hydroxyimino)ethyl)-3-methyl-1-phenyl-1H-indazole-4,7-dione, Scheme (1B), comp. No. (15).

An Ethanolic solution of **Scheme (1B)**, comp. No. **(13,** 0.01mole) and hydroxylamine hydrochloride (2 moles) with sodium acetate (3moles) were refluxed for 5 hrs. The reaction mixture was filtrated while hot from unreacted materials. The filtrate was concentrated, cooled and precipitated by addition of cold water and crystallized from ethanol to give **Scheme (1B)**, comp. No. **(15)**, **Table (6)**.

Synthesis of 9-methyl-7,8,12-trioxo-11-phenyl-7,8,11,12-tetrahydro-6H-pyrazolo[4,3g]pyrido[2,1-a]isoquinolin-5-ium iodide, Scheme (1B), comp. No. (16a-c).

An Ethanolic solution of **Scheme (1B)**, comp. No. (**14a-c**, 0.01mol) in few drops of piperidine was refluxed for 3hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtrated, crystallized from ethanol to give **Scheme (1B)**, comp. No. (**16a-c**), **Table (8)**.

Synthesisof6-(1-ethyl-1l4,4l5-pyridin-4-ylidene)-9-methyl-7,8,12trioxo-11-phenyl-7,8,11,12-tetrahydro-6Hpyrazolo[4',3':6,7]isoquinolino[2,1-a]quinolin-5-iumiodide,Scheme (1B), comp. No. (17).

An Ethanolic solution of **Scheme (1B)**, comp. No. (**16**, 0.01 mol.) and pyridin-ium-ethiodide salts (0.01mol.) in few drops of piperidine was refluxed for 4 hrs, reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid to neutralize the excess of piperidine. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (1B)**, comp. No. (**17)**, **Table (6)**.

An Ethanolic solution of **Scheme (1B)**, comp. No. (**15**, 0.01 mol.) and 1-(2-oxopropyl) pyridin-1-ium iodide (0.01mol.) in few drops of piperidine was refluxed for 2 hrs and then in acetic acid was refluxed for 2 hrs, reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid to neutralize the excess of piperidine. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (1B)**, comp. No. **(18)**, **Table (6)**.

Synthesis of 1-((1-(3-methyl-4,7-dioxo-1-phenyl-4,7-di[H]-1H-indazol -5-yl)ethylidene) amino)pyridin-1-ium chloride, Scheme (1B), comp. No. (19a-c).

An Ethanolic solution of **Scheme (1B)**, comp. No. (**15**, 0.01 mol.) and pyridin-ium-ethiodide salts (0.01mol.) in few drops of conc. HCl was refluxed for 4 hrs, reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid to neutralize the excess of piperidine. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (1B)**, comp. No. (**19a-c**), **Table (8)**.

Synthesis of 7,9-dimethyl-8,12-dioxo-11-phenyl-11,12-di[H]-8H-pyrazolo[4,3-g] pyrido [2,1-a]phthalazin-5-ium chloride Scheme (1B), comp. No. (20a-c).

An ethanolic solution of **Scheme (1B)**, comp. No. (**19a-c**, 0.01mole) in few drops of piperidine was fusion for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (1B)**, comp. No. (**20a-c**), **Table (8)**.

Synthesis of 3,5,8-trimethyl-4,9-dioxo-6-(3-oxobutanoyl)-1-phenyl-7-(pyridin-1-ium-1yl)-4,9-di[H]-1H-pyrazolo[3,4-g]isoquinolin-6-ium chloride iodide, Scheme (1B), comp. No. (21).

An Ethanolic solution of **Scheme (1B)**, comp. No. (**18**, 0.01 mol.) & acetyl acetone (0.01mol.) in few drops of conc. HCl was refluxed for 4 hrs, reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid to neutralize the excess of piperidine. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme** (**1B**), comp. No. (**21**), **Table (6**).

Synthesis of 3,6,8-trimethyl-4,16-dioxo-1-phenyl-4,16-dihydro-1H-indolizino[3,2-c] pyrazolo[3,4-g]pyrido[2,1-a]isoquinolin-9-ium chloride, Scheme (1B), comp. No. (22).

An Ethanolic solution of **Scheme (1B)**, comp. No. (**21**, 0.01mol) in few drops of piperidine was refluxed for 3hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtrated, crystallized from ethanol to give **Scheme** (**1B**), comp. No. (**22**), **Table (6**).

Synthesis of 1-ethyl-4-(2-(hydroxyl-imino)-2-(3-methyl-1-phenyl-4, 5-di [H]-1H-pyrazol-5-imino--4-yl-ethyl-quinolin-1-ium iodide, Scheme (2), comp. No. (6).

A mixture of **Scheme (2)**, comp. No. **(1b**, 1 mole), hydroxylamine hydrochloride (2 moles) and sodium acetate (3 moles) was dissolved in ethanol (30 ml) and heated in a water bath for about an hour. The reaction mixtures were filtrated from unreacted materials. The filtrate was concentrated and cooled. The precipitated products after dilution with water were

separated, filtrated, washed with water several times and crystallized from ethanol, **Table** (9).

Synthesis of 1-ethyl-4-(2-(hydro-xyimino)-2-(5-imino-3-methyl-1-phenyl-4,5-di[H]-1Hpyrazol-4-yl)-1-(2-methylpyridin-1-ium-1-yl)ethyl)quinolin-1-ium iodide Scheme (2) comp. No. (7a, b).

An ethanol solution of dye, **Scheme (2)** comp. No. **(6)**, (0.01mol) & 2-pyridin [quinolin] (0.01mol) in the presence of (0.01mol) iodine were refluxed for 5-7 hrs on a hot plate. The reaction mixtures were filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol, **Table (9)**.

Synthesis of Self Assembly [ICT] functional 4-(1,5-dimethyl-3-phenyl-3H-pyrazolo[4,3e]pyrido[1',2':4,5]pyrazino[1,2-c]pyrimidin-13-yl)-1-ethylquinolin-1-ium iodide Scheme (2) comp. No. (9a, b).

Mixture of (**8a & b**, 0.005 moles) in acetic anhydride (10 ml) was refluxed for 3 hours. The reaction mixture was filtrated from unreacted materials, concentrated and cooled; the solid product was collected and crystallized from ethanol, **Table (9)**.

<u>Synthesis 4-(1,5-dimethyl-3-phenyl-3H-pyrazolo[4,3-e]pyrido [1',2':4,5] pyrazino [1,2-c]pyrimidin-13-yl)-zero-1[4]methine cyanine dye, Scheme (2) comp. No. (8a, b)</u>

Fusion of **Scheme (2)** comp. No. **(7a, b)** with piperidine for about an hour then dissolved the reaction mixture in ethanol and reflux for 3 hours. The reaction mixture concentrated to half of its volume, cooled and precipitated with ice water then recrystallized from ethanol, **Table 4**. **Synthesis of 4,4'-(1,5-dimethyl-3-phenyl-3H-pyrazolo[4,3-e]pyrido [1',2': 4,5] pyrazino [1,2-c] pyrimidine-7,13-diyl)bis-zero-methine Scheme (2)** comp. No. **(10a-e).**

An ethanol solution of dye **Scheme (2)** comp. No. **(51a, b)** (0.01mol) and pyridin [quinolin]-2(4)-ium-1-ethiodide salts (0.01mol) in the presence of few drops of piperidine were refluxed for 5-7 hrs on a hot plate. The reaction mixtures were filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and acidified with acetic acid. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol, Table (9).

Synthesis of pyridinium iodide derivative of 4-acetyl-1-phenyl-pyrazol-5- oxime, Scheme (3A), comp. No. (21B)

An Ethanolic solution of **Scheme (3A)**, comp. No. **(21A, 0.01mol.)**, hydroxylamine hydrochloride (0.02 moles) & sodium acetate **(3 moles)** was refluxed for 4 hrs the reaction mixture was filtrated hot from unreacted materials. The filtrate concentrated, cooled and precipitated by addition of cold water, filtrated, crystallized from ethanol to give **Scheme (3A)**, Comp. No. **(21B)**, **Table (10)**.

Synthesis of 3-methyl-4-oxo-1-phenyl-4,5-di[H]-H-pyrazolo[3,4-a]quinolizin-6-ium iodide & 4-(hydroxyimino)-3-methyl-1-phenyl-4,5-di[H]-1H-Pyrazolo [3,4-a] quinolizin-6-ium iodide, Scheme (3A), comp. No. (22A, B)

An Ethanolic mixture of **Scheme (3A)** comp. No. (**21A, B**, and 0.01mol.) & piperidine (1-2 ml) was refluxed for 4-6 hours where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, cooled and precipitated by addition of cold water. The precipitated products was filtered, washed several times with water, dried and crystallized from ethanol to give **Scheme (3A)**, comp. No. **(22A, B)**, **Table (10)**.

An acidic solution of **Scheme (3A)**, comp. No. **(22B**, 0.01mol) in Ac₂O was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water the precipitated products, filtrated and crystallized from ethanol to give **Scheme (3A)**, comp. No. **(22D)**, **Table (10)**.

Synthesis of 11-methyl-3-oxo-9-phenyl-2,3,3a,9-tetra[H] dipyrrolo [3,4-a:2',3'-c] guinolizin-4-ium iodide Scheme (3A), comp. No. (23)

Route (A), An acidic solution of **Scheme (3A),** comp. No. **(22D,** 0.01mol.**)** in AcOH was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water, the precipitated products, filtrated and crystallized from ethanol to give **Scheme (3A),** comp. No. **(23), Table (6), Route (B),** An Ethanolic mixture of **Scheme (3A)** Comp. No. **(22A,** 0.01mol.**)** & glycine in piperidine (1-2 ml) was refluxed for 4-6 hours where it gives a deep permanent color at the end of refluxing. It was filtered while hot, concentrated to half of its volume, washed several times with water, dried and crystallized from ethanol to give **Scheme (3A),** comp. No. (23), **Table (10).**

Synthesis of 6-(2,5-dioxo-imidazolidin-4-yl)-3-methyl-1-phenyl-1,6a-di[H] Pyrazolo [3,4a]pyrrolo[2,3-c] quinolizin-7-ium iodide, 6-(2,5-dioxo-imidazolidin-4-yl)-3-methyl-1phenyl-1,6a-di[H]pyrazolo[3,4-a]pyrrolo[2,3-c] quinolizin-7-ium, 11-methyl-3-(2-methyl-5-oxo-4,5-di[H]-oxazol-4-yl)-9-phenyl-3a,9-di[H]-dipyrrolo[3,4-a:2',3'-c] quinolizin-4ium-iodide & 6-(2,5-dioxohexa[H]pyrimidin-4-yl)-3-methyl-1-phenyl-1,6a-di[H] pyrazolo [3,4-a]pyrrolo [2,3-c]quinolizin-7-ium, Scheme (3A), comp. No. (24A-D)

An acidic mixture of **Scheme (3A)**, Comp. No. **(23**, 0.01mol.) & 3-methyl-1-phenyl-2,4-di[H]-3H-pyrazolin-5-one, Hydantoin (imidazol-2,5-dione), 2-methyl-oxazol-5(4H)-one & Barbituric acid (tetra[H] pyrimidin-2,5-dione) in AcOH was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water, the precipitated products, filtrated and crystallized from ethanol to give **Scheme (3A)**, comp. No. **(24A-D)**, **Table (10)**.

Synthesis of 11-methyl-4-oxo-9-phenyl-2a1,2b, 4,5, 5a,9-hexa[H]-3H-imidazo [4,5-b]pyrazolo[3,4-g]pyrido[2,1,6-de] pyrrolo[2,3,4-ij]quinolizin-12-ium, 4,11-dimethyl-9-phenyl- Synthesis of 2a1,9-di[H]oxazolo[4,5-b]pyrido[2,1,6-de]dipyrrolo[3,4-g:2',3',4'-ij] quinolizin-12-ium-iodide&12-methyl-4-oxo-10-phenyl-2a 1,3,4,5,6,10-hexa [H]pyrido [2, 1,6-de]pyrimido[4,5-b]dipyrrolo[3,4-g:2',3',4'-ij]quinolizin-13-ium-iodide, Scheme (3A), comp. No. (25A-D)

Route (A), an acidic mixture of **Scheme (3A)** Comp. No. **(24A-D,** 0.01mol.) in AcOH was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water, the precipitated products, filtrated and crystallized from ethanol to give **Scheme (3A)** Comp. No. **(25A-D), Table (6),** <u>Route (B)</u> An acidic mixture of **Scheme (3A)** Comp. No. **(22B,** 0.01mol.) in AcOH & 4-acetyl-1-phenyl-pyrazolin-5-one under AcOH followed by piperidine catalysis was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold

water, the precipitated products, filtrated and crystallized from ethanol to give Scheme (3A), comp. No. (25A), Table (10).

Synthesis of 3,11-dimethyl-5,9-diphenyl-5,9-di[H]-1H-dipyrazolo[4,3-b:3',4'-g]pyrido [2,1,6-de] pyrrolo[2,3,4-ij]quinolizin-12-ium-zero-2[4] methine, 3,11-dimethyl-5,9-di phenyl-2a1,9-di[H]-5H-dipyrazolo[4,3-b: 3',4'-g]pyrido[2,1,6-de]pyrrolo[2,3,4-ij] quinolizin-12-ium-zero-2[4] methine, 3,11-dimethyl-4-oxo-9-phenyl-2a 1,4,5,9-tetra [H]-3H-imidazo [4,5-b] pyrazolo [3,4-g]pyrido [2,1,6-de]pyrrolo[2,3,4-ij]quinolizin-12-iumzero-2[4]methine, 4,11-dimethyl-9-phenyl-2a1, 9-di[H]oxazolo[4,5-b] Pyrazolo [3,4g]pyrido[2,1,6-de]pyrrolo [2,3,4-ij]quinolizin-12-ium-iodide-zero-2[4]methine & 12methyl-4-oxo-10-phenyl-2a1,3,4,5,6,10-hexa[H] pyrazolo [4,3-b]pyrido[2,1,6-de] pyrimido[5,4-g]pyrrolo[4,3,2-ij]quinolizin-13-ium-zero-2[4]Methine cyanine dyes, Scheme (3A), comp. No. (26A-D)

An Ethanolic solution of **Scheme (3A)**, comp. No. (**25A-D**, 0.01mol.) & pyridin-4[quinolin-4(1)]-ium-ethiodide (0.01mol.) in few drops of piperidine was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (3A)**, comp. No. **(26A-D)**, **Table (11)**.

Synthesis of 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-1,2b,3,6,13, 16 hexa[H] Pyrazolo [4',3':8,9]quinolizino[4,5,6ab]pyrazolo[4',3':8,9] quinolizino [6,5,4-gh]pyrrolo [2,3,4-de][2,7] naphthyridin-17,18-diium-iodide, Scheme (3B), comp. No. (28)

An acidic mixture of **Scheme (3B)**, Comp. No. **(22C**, 0.01mol.) & **Scheme (3B)**, comp. No. **(27**, 0.01mol.) in AcOH was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled and precipitated by addition of cold water, the precipitated products, filtrated and crystallized from ethanol to give **Scheme (3B)**, comp. No. **(28)**, **Table (10)**.

Synthesis of Synthesis of 5-(4-(diethylperoxy)-5-(3-methyl-4-oxo-1-phenyl-4,5-di[H]-1H-pyrrolo [3,4-a]quinolizin-6-ium-5-yl)-2H-pyrrol-3-yl)-4-imino-3-methyl-1-phenyl-4,5di[H]-1H-pyrazolo[3,4-a]quinolizin-6-ium-iodide & 5-(4-formyl-5-(3-methyl-4-oxo-1phenyl-4,5-dihydro-1H-pyrrolo[3,4-a]quinolizin-6-ium-5-yl)-2H-pyrrol-3-yl)-4-imino-3methyl-1-phenyl-4,5-di[H]-1H-pyrazolo[3,4-a]quinolizin-6-ium iodide (29A,B)

An Ethanolic solution of **Scheme (3B)**, comp. No. **(28**, 0.01mol.) & ethyl-ortho-formate and/or chloroform (0.01mol.) in few drops of piperidine were refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (3B)**, comp. No. **(29A, B)**, **Table (10)**.

Synthesis of 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-2,2b,3,6,9b ,13 ,16,16a-octa[H] Pyrazolo [4',3':8,9]quinolizino[4,5,6-ab]pyrrolo[4,3,2-de]pyrrolo [3',4':1,2] quinolizino [4,5,6-gh] [2,7]naphthyridin-17,18-diium iodide, Scheme (3B), comp. No. (30)

An Ethanolic solution of **Scheme (3B)**, comp. No. **(29A, B**, 0.01mol.**)** & few drops of piperidine was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (3B)**, comp. No. **(30)**, **Table (10)**.

Synthesis of 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-1,2b,3,6,13,16-hexa[H] Pyrazolo [4', 3':8,9]quinolizino[4,5,6-ab]pyrrolo[4,3,2-de] pyrrolo[3',4':1, 2] quinolizino[4,5,6-

gh][2,7]naphthyridin-17,18-diium-iodide & 4,15-dimethyl-3,16-dioxo-6,13-diphenyl-2b,3, 6,13, 16,16a-hexa[H]-1H-Pyrazolo [4',3':8,9] quinolizino[4,5,6-ab]pyrrolo [4,3,2-de] pyrrolo[3',4':1,2] quinolizino[4,5,6-gh] [2,7]naphthyridin-18-ium-iodide, Scheme (3B), comp. No. (31A, B)

An Ethanolic solution of **Scheme (3B)**, comp. No. **(30**, 0.01mol.) & few drops of piperidine was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give either **Scheme (3B)**, comp. No. **(31A or 31B)**, **Table (10)**.

Synthesis of self-assembly [ICT] functional dyes 4,15-dimethyl-3,16-dioxo-6,13diphenyl-2b,3,6,13,16,16a-hexa[H]-1H-pyrazolo [4',3': 8,9]quinolizino [4,5,6-ab] pyrrolo[4,3,2-de] pyrrolo [3',4':1,2] quinolizino[4,5,6-gh][2,7] naphthyridin-18-ium iodide-zero-2[4] methine cyanine dyes, Scheme (3B), comp. No. (32a-c)

An Ethanolic solution of **Scheme (3B)**, comp. No. **(31A or 31B)** and pyridin-4[quinolin-4(1)]ium-ethiodide (0.01mol.) in few drops of piperidine was refluxed for 1 hrs. The reaction mixture was filtrated from unreacted materials. The filtrate concentrated to one third of its volume, cooled. The precipitated products after dilution with water were separated, filtrated, crystallized from ethanol to give **Scheme (3B)**, comp. No. **(32a-c)**, **Table (11)**.

Solvatochromic & Preparation of Dyes Solution:

The organic solvents were used of spectroscopic grade of purified according to the recommended methods [39]. The electronic absorption spectra of the studied dyes in different organic solvents were recorded within the wavelength (350-700 nm) on 6405 UV/Visible recording spectrophotometer using 1 cm cell. The stock solution of the dye was of the order 10⁻³ M. Solution of low molarities used in spectral measurements was obtained by accurate dilution. For studying the effect of pure solvents in the UV and visible range: Accurate volumes of the stock solution of the dyes were diluted to appropriate volume in order to obtain the required concentrations. The spectra were recorded immediately after mixing in order to eliminate as much as possible the effect of time. - For studying the spectral behaviour in mixed solvents in the visible region: An accurate volume of the stock solution (10⁻³ M in ethanol) of the dyes were placed in 10 ml measuring flask containing the required volume of ethanol, then completed to the mark with the other solvent. For studying the spectral behaviour in aqueous universal buffer solutions: An accurate volume of the stock solution was added to 5 ml of the buffer solution in 10 ml measuring flask, then completed to the mark with redistilled water. The pH of such solution was checked before spectral measurements. An accurate volume of the stock solution of the dyes was diluted to an appropriate volume in order to obtain the required concentration. The spectra were recorded immediately after mixing in order to eliminate as much as possible the effect time.

CONCLUSION:

1-Special attention has been focused on the chemical structure of some selected synthesized N-bridge head heterocyclic self-assembly **[ICT**

2-Characteristic attention has been focused on absorption behaviour of such dyes, in order to permit a criterion for their use as photosensitizers & to shed some light upon a possible color chemical structure relationship. The results showed the position of fundamental light absorption and their molar extinction coefficients are influenced by the nature of such heterocyclic residue based on (their linkage position) & nature of the bridge head heterocycles.

The results of the study of absorption spectra of all the newly synthesized functional & their polymethine cyanine dyes in 95% EtOH indicated that the absorption bands resulted in the bathochromically photosensitization shift for fundamental light absorption color. Some selected dye formation & their sites reactivity were postulated and in our point view, this thesis would be considered as a guidance in the field of synthetic routes of N-bridge head heterocyclic synthesized self-assembly **[ICT]** functional and polymethine cyanine dyes based on, their specification, sites reactivity involving formation mechanistic pathway.

3-The solvato (media)chromic [aqueous universal buffer solution] behavior of some selected N-bridge head heterocyclic synthesized self-assembly **[ICT]** functional polymethine cyanine dyes The fundamental light absorption in color of such dyes in some pure organic solvents (aqueous universal buffer solution) were examined in the visible region resulted in solvatochromism and colour shift of such dyes with solvents having different polarities and/or aqueous universal buffer solution. This permits a selection of optimal solvent and/or aqueous media when these dyes are applied as photosensitizers or dye sensitizer solar cells (DSSCs).

4-The absorption spectra of some selected self-assembly [ICT] functional dyes and related cyanine dyes in universal buffer solution absorbed the fundamental green blue light in acid/base media and might be used as photosensitizers in both acidic and basic medium. Thus, it was obvious that the covalent hydrated dyes absorbed the fundamental colour in acid medium and other absorb the fundamental light in basic media.

Acknowledgement

The authors are grateful thanks to Dr. Islam M. S. Abdellah Lecturer, Chemistry Department, during his stay as Scholarship member between Aswan-NC State University, Egypt for helping us crying out Spectral analysis (Mass Spectra & FT-IR) and Molecular Modeling Studies Density Functional Theory (DFT).

References

[1a]-Bird, C. W., Tetrahedron, (1998), 54, 10179. Chem. Res., 47 (4), 1186-1198, (2014).

- [1b]-Hans Jakob Worner, € Christopher A. Arrell, Natalie Banerji, Andrea Cannizzo, MajedChergui, Akshaya K. Das, Peter Hamm, Ursula Keller,7 Peter M. Kraus, Elisa Liberatore, Pablo Lopez-Tarifa, Matteo Lucchini, Markus Meuwly, Chris Milne, Jacques-E. Moser Ursula Rothlisberger Grigory Smolentsev, Joel € Teuscher, Jeroen A. van Bokhoven, and Oliver Wenger, STRUCTURAL DYNAMICS 4, 061508, (2017).
- [2]- Ravindran, E. and Ananthakrishnan, S. J., J. Mater. Chem. C, 3, 4359, (2015).
- [3]- Bonifazi, M. D., Chem. Soc. Rev., 41, 211, (2012).
- [4]- Fenwick, O., Dyck, C. V. K. Murugavel, D., Cornil, F. R. & Haar, S., J. Mater. Chem. C, 3, 3007, **(2015).**
- [5]- Yongjun, Li., Taifeng, Liu, Huibiao, Mao-Zhong, Liu, T. & Yuliang, Li.; Acc. Chem. Res., 47 (4), 1186-1198, (2014).
- [6] -Yongjun, Li, Taifeng Liu, Huibiao Liu, Mao-Zhong Tian, & Yuliang, Li Acc. Zhao-ming, Xue & Xian Yang, Ij-, J. Mater. Chem. C, 4, 2990, (2016).
- [7]- Kim, F. S., Ren G. Q. & Jenekhe, S. A., Chem. Mater. 23, 682, (2011).
- [8]- A.I.M. koraiem, R. M. abu-el-hamd, H. A. Shindy & M. A. Ibrahim, ASW. SCI. TECH. BULL., (2017).
- [9]-Abd El-Motaleb, A. M., M.Sc.Thesis, Faculty of Science, Aswan University, 169-174, (2011).
- [10]-Mohanty MK, Sridhar R, Padmanavan SY. Indian J.Chem 158:1146 (1977).

25

[11]-B. T. Thakera, Kiran R. Suratia, S. V. Patela & C. K. Modib J. Saudi Chem. Soc., Vol.

10, No. 3; 447-460 **(2006)**.

- [12]-L. J. Bellamy; The infrared spectra of complex molecules, London; Methuen, (1962).
- [13]-L.Wade, Organic Chemistry 4th.544-604, (1999).
- [14]-Scheinman, F. Nuclear magnetic resonance of complex Molecules, Braunschweig: Vieweg and Sohn GmbH, vol.1. (1970).
- [15]-Batterham, T. J.; ¹HNMR spectra of simple heterocycles" Wiley New York, (1973).
- [16]-Porter, Q. N., and Baldas, J; "Mass Spectrometry of Heterocyclic Compounds "Wiely, New York, (1971).
- [17]-Ficken, G. E., Chemistry of Synthetic Dyes ed. K. Venkataraman Academic Press New York 4, 212-230, (1971).
- [18]-West, W.; Geddes, A. L. J. Phys. Chem., 68, 4, 837, (1964).
- [19]-Ishchenko, A. A., Derevyanko, N. A., Zuarovski, V. M., and Tolmachev, A. I., Theoret. Experiment. Khim. 20,443, (1984).
- [20]-A. A. Ishchenko, N. A. Derevyanko, V. M. Zuarovski, & A. I. Tolmachev, Theoret. Experiment. Khim. 20, 443, (1984).
- [21]- Ishchenko, A. A., Svidro, A. A., and Derevyanko, N. A., Dyes and Pigments 10, 85-96, (1989).
- [22]-A. I. M. Koraiem & J.F. Prant. Chemie.326 (4), 695, (1984).
- [23]-Dietz F, Mueller G, Bach G, I. Von Grossmann, J Signal Am. 1975; 3.
- [24]- Gibson, H. W. and Canad.; J. Chem. Soc., 51, 3065, (1973, 1976).
- [25]- J.E. Kuder, H.W. Gibson, D. Wychick, Linear free energy relations. III. Electrochemical characterization of salicylaldehyde anils, J Org Chem, 40, 875-879, (1975).
- [26]-Koraiem's article reviews 1990, 1991.
- [27]-A.I.M.Koraiem, R.M.Abu El-Hamd & R.M.Abd El- Aal, .Proc.Indian.Acad.Si. Vol.109 (2):115-134 (1997).
- [28]-K. Nishimoto, A MO Theoretical Study of Organic Dyes I. Effect of Chemical Softness on the Electronic Spectra, Bull Chem Soc Jpn, 66, 1876-1880, (1993).
- [29]-J. Gao, C. Alhambra, Solvent Effects on the Bond Length Alternation and Absorption Energy of Conjugated Compounds, J. Am. Chem. Soc., 119, 2962, (1997). http://dx.doi:10.1021/JA9700358.
- [30]-J.O. Morley, Theoretical studies on the electronic structure and spectra of the merocyanines, J Mol Struct THEOCHEM, 304, 191-202, (1994), http://dx.doi:10.1016/0166-1280(94)80016-2.
- [31]- Da silva, L., Machado, C. And Rezande, M. C.; J. Chem. Soc. Perki Trans. 2, 483, (1995).
- [32]- Frank, J.; Trans. Faraday Soc., 21, 536, (1926).
- [33]-Weast, R. C. and Astl, M. J. CRC handbook of chemistry and physics, 61 st. Edn. (CRC press, Inc.) 56, (1980-1981).
- [34]- M. Mitewa, N. Mateeva, L. Antonov & T. Deligeorgiev, Dyes and Pigments, 27, 219-225, (1995).
- [35]-Mahmoud, M. R.; Khalil, Z. H. and Issa, R. M., Acta. Chim.Acad. Sci. Hung, 87(2), 121-5, (1975).

- [36]-Ewing, G., Instrumental Methods for Chemical Analysis Mc. Graw-Hill Book Co Inc. 22 (1960).
- [37]-M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson et al., Gaussian 09, Revision A.02; Gaussian Inc.: Wallingford CT, (2009).
- [38]-A. I. Koraiem, A. El-Shafei, I. M. Abdellah, F. F. Abdel-Latif, R. M. Abd El-Al, Journal of Molecular Structure, 1173, 406-416, (2018).
- [39]-Reddick, J. A. and Banger, W. B.; Techniques of Chemistry Organic Solvents (A Weiss Berger, Ed), 3 rd., Ed N. Y. Wiley Vol. 11, (1970).
- [40]-S.M. Sayed, Ph.D Thesis, Chemistry Department, Faculty of Science, Aswan University, (1998).
- [41]-N.Y. Mahmoud, Ph.D Thesis, Chemistry Department, Facluty of Science, Aswan University, (2006).

Scheme (1A)

Scheme (1B)

Scheme (2) Substituted

(9a,b): A=H-1-yl **(a)**, A=C₄H₄-1-yl, **(10a-e)**: A(B)= H-4-yl(H-4-ium) (a); A(B)= H-4-yl salt(C₄H₄-4-ium) (b); A(B)= H-4-yl(C₄H₄-1-ium) (c); A(B)= C₄H₄-4-yl, (H-4-ium) (d); A(B)= C₄H₄-4-yl (C₄H₄-4-yl (C₄

Scheme (3A)

Scheme (3A) Substituents:

(22A-E) X=O(a),X=NOH(b),X=O(c),X=NOH(d), (A): 3-methyl-1-phenyl-2,4-di[H]-3H-pyrazol-5-one,(B), Hydantoin (imidazol-2,5-dione), 2-methyl-oxazol-5(4H)-one (C) & Barbituric acid (tetra[H] pyrimidin-2,5-dione),(D), (25A-D): A(B),continue 3-methyl-1-phenyl-2,4-di[H]-3Hpyrazole,(a), A(B), continue (imidazol-2-one),(b), A(B),continue 2-methyl-oxazole (c) & A(B),continue tetra[H] pyrimidin-2,5-dione),(d).

Equation (1)

Scheme (3B)

(32a-c)

Equation (2): Mesomeric Structures for Stability & Pathways of [ICT], DSSCs, (23, 28, 30 &31A, B)

Table (1A): Summary of Feature for Normalized Absorption Spectra of Scheme (1A), comp. No. (6a-c, 8a-c & 10a-c) & Scheme (1B), (16a-c, 17, 19a-c & 20a-c) in (1x 10⁻⁴ M) Ethanol.

No.	λ_{max}	Absorbed	Transmitted
	(ε _{max})	color	color
6a	514	Green	Purple
	(0.5051)		
6b	504	Green	Purple
	(0.2460)		
6c	526	Green	Purple
	(0.4812)		
8a	574	Yellow-green	Violet
	(0.1592		
8b	498	Blue- green	Red
	(0.1974)		
9b	360	Violet	Yellow-Green
	(1.107)		
10a	510	Green	Purple
	(0.2120)		
10b	522	Green	Purple
	(0.2120		
10c	506	Green	Purple
	(0.251)		
16a	504	Green	Purple
166	(0.661)	Vielet	Vallaw Craan
dor	400 (0.7001)	VIOIEt	Yellow- Green
	(0.7091)		
16c	522	Green	Purple
	(0.491)		
	412	Violet	Yellow- Green
	(0.7091		
19b	306	Violet	Yellow-Green
	(1.586)		
20a	492	Blue- green	Red
	(0.2350)		

Table (1B): Summary of Feature for Normalized Absorption Spectra of Scheme (2), (8a-b & 9a-e), Scheme (3A), comp. No. (26A-D) & Scheme (3B), comp. No. (26a-d & 32a-c) in (1x 10⁻⁴ M) Ethanol.

No.	λ _{max}	Absorbed	Transmitted
	(ε _{max})	color	color
20b	580	Yellow-green	Violet
	(0.255)		
	500	Green	Purple
	(0.289)		
20c	400	Violet	Yellow- green
	(0.798)		
8a	460	Blue	Yellow
	(0.698)	51	
8b	498	Blue- green	Red
_	(1.010)		
9a	520	Green	Purple
01	(2.443)		X e II e
90	480	Blue	Yellow
00	(670)	Dhua araan	Ded
90		Blue- green	Rea
64	(1.760)	Pluo	Vollow
Ju	475	Dide	Tellow
90	/78	Blue	Vellow
36	(1 593)	Dide	Tenow
26A	390	Violet	Yellow-Green
20/1	(0.755)	VIOICE	
26B	504	Green	Purple
200	(0.356)	Green	i uipic
	(0.550)		
26D	480	Green-Blue	Orange
	(670)		-
32a	402	Violet	Yellow- green
	(0.322)		J.
32c	500	Blue- green	Red
	(0.440)	J	
	<u> </u>		

							Polar Org	ganic solvent	:						Nonpo	lar Organic
e		Water	D	MF		CHCI ₂	D	MSO	Ace	tone		MeOH	E	EtOH	S	
6	λmax	Color	λmax	Color	λmax	Color	λmax	Color	λπαχ	Color	λmax	Color	λmax	Color	λmax	Color
	(Emax)	Abs. (Trans.)	(E _{max})	Abs. (Trans.)	(ɛ _{max})	Abs. (Trans.)	(E _{max})	Abs. (Trans.)	(E _{max})	Abs. (Trans.)	(ɛ _{max})	Abs. (Trans.)	(E _{max})	Abs. (Trans.)	(E _{max})	Abs. (Trans.)
6a	498 (0291)	Blue-green (Red)	502 (0.225)	Green (Purple)	400 (0.51)	Violet (Yellow-green)	510 (0.321)	Green (Purple)	396 (0.615)	Violet (Yellow- green)	500 (0.279)	Blue-green (Red)	528 (0.358)	Green (Purple)	404 (0.266)	Violet (Yellow- green)
6b	494 (0.30)	Blue-green (Red)	548 (0.274)	Green (Purple)	506 (0.209	Green (Purple)	514 (0.372)	Green (Purple)	508 (0.310)	Green (Purple)	496 (0.467)	Blue-green (Red)	504 (0.246)	Green (Purple)	516 (0.220)	Green (Purple)
6c	512 (0.47)	Green (Purple)	508 (0.142)	Green (Purple)	540 (0.209)	Green (Purple)	540 (0.425)	Green (Purple)	530 (0.395)	Green (Purple)	524 (0.423)	Green (Purple)	524 (0.486)	Green (Purple)	544 (0.254	Green (Purple)
8a	568 (0.17)	Yellow- green (Violet)	578 (0.216)	Yellow- green (Violet)	408 (0.599)	Violet (Yellow-green)	582 (0.280)	Yellow (Blue)	576 (0.416)	Yellow- green (Violet)	570 (0.287)	Yellow- green (Violet)	574 (0.159)	Yellow- green (Violet)	414 (0.286)	Violet (Yellow- green)
8b	496 (0.21)	Blue-green (Red)	512 (0.193)	Green (Purple)	408 (0.595)	Violet (Yellow-green)	510 (0.229)	Green (Purple)	508 (0.493)	Green (Purple)	500 (0.246)	Blue-green (Red)	500 (0.197	Blue-green (Red)	506 (0.204)	Green (Purple)
8c	400 (0.31)	Violet (Yellow- green)	442 (0.601)	Blue (Yellow)	412 (3.43)	Violet (Yellow-green)	370 (0.986)	Violet (Yellow- green)	_		360 (1.035)	Violet (Yellow- green)	366 (0.542)	Violet (Yellow- green)	408 (0.516)	Violet (Yellow- green)
9b	-	-	366 (1.529)	Violet (Yellow- green)	376 (2.709)	Violet (Yellow-green)	362 (0.603)	Violet (Yellow- green)	402 (3.175)	Violet (Yellow- green)			358 (1.110)	Violet (Yellow- green)	368 (2.101)	Violet (Yellow- green)
10a	318 (1.33)	Violet (Yellow- green)	440 (0.330)	Blue (Yellow)	400 (0.522)	Violet (Yellow-green)	440 (0.255)	Blue (Yellow)	510 (0.372	Green (Purple)	518 (0.242)	Green (Purple)	516 (0.210)	Green (Purple)	-	-
10b	522 (0.19)	Green (Purple)	538 (0.287)	Green (Purple)	408 (0.364)	Violet (Yellow-green)	540 (0.250)	Green (Purple)	522 (0.342)	Green (Purple)	520 (0.202)	Green (Purple)	530 (0.231)	Green (Purple)	-	-
10c	502 (0.31)	Green (Purple)	448 (0.367)	Blue (Yellow)	528 (0.183)	Green (Purple)	434 (0.408)	Blue (Yellow)	506 (0.254)	Green (Purple)	504 (0.244)	Green (Purple)	506 (0.251)	Green (Purple)	-	-

Table (2A): Values of Maximum Absorption (nm) and Extinction Coefficients (mol⁻¹ cm⁻¹) of **Scheme (1A)**, comp. No. **(6a-c, 8a-c, 9a-c & 10a-c)** in pure organic solvents.

						Polar Organic solve	ent				Nonpolar	Organic solvent
e	V	Water	Ι	DMF		CHCI₃		Acetone	EtC	H		C ₆ H ₆
ð	λ_{max}	Color	λ_{max}	Color	λ_{max}	Color	λ_{\max}	Color	λ_{max}	Color	λ_{max}	Color
	(ε _{max})	Abs.	(ε _{max})	Abs.	(ε _{max})	Abs.	(ε _{max})	Abs.	(ε _{max})	Abs.	(ε _{max})	Abs.
		(Trans.)		(Trans.)		(Trans.)		(Trans.)		(Trans.)		(Trans.)
8b	474	Blue	501	Green	470	Blue	492	Blue-green	498	Green	470	Violet
	(0.339)	(Yellow)	(0.869)	(Purple)	(0.977)	(Yellow)	(0.771)	(Red)	(0.918)	(Purple)	(0.984)	(Yellow-green)
9e	469	Blue	500	Green	472	Blue	478	Blue	478	Green	462	Green
	(0.534)	(Yellow)	(0.568)	(Purple)	(0.947)	(Yellow)	(0.802)	(Yellow)	(0.925)	(Purple)	(0.642)	(Purple)

Table (2B): Values of Maximum Absorption (nm) and Extinction Coefficients (mol⁻¹ cm⁻¹) of **Scheme (2)**, comp. No. **(8b & 9e)** in pure organic solvents.

Table (2C): Values of Maximum Absorption (nm) and Extinction Coefficients (mol⁻¹ cm⁻¹) of Scheme (1B), comp. No. (16a-c, 19a-c, & 120a-c) in pure organic solvents.

							Pola	ar Organic so	olvent						Nonpo	olar Organic
															5	solvent
ye	W	ater	D	MF	CH	ICI₃	D	MSO	Ace	etone	N	/leOH	E	EtOH		C ₆ H ₆
	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)
16a	496 (0.264)	Blue- green (Red)	298 (1.945)	Violet (Yellow- green)	400 (1.260)	Violet (Yellow- green)	518 (0.321)	Green (Purple)	392 (0.722)	Violet (Yellow- green)	506 (0.410)	Green (Purple)	510 (1.276)	Green (Purple)	514 (0.380)	Green (Purple)
16b	320 (0.595)	Violet (Yellow- green)	548 (0.274)	Green (Purple)	402 (1.291)	Violet (Yellow- green)	442 (0.420)	Blue (yellow)	402 (0.602)	Violet (Yellow- green)	410 (0.494)	Violet (Yellow- green)	406 (0.684)	Violet (Yellow- green)	404 (0.220)	Violet (Yellow- green)
16c	520 (0.158)	Green (Purple)	508 (0.142)	Green (Purple)	414 (0.874)	Violet (Yellow- green)	530 (0.254)	Green (Purple)	414 (0.529)	Violet (Yellow- green)	502 (0.278)	Green (Purple)	516 (0.502)	Green (Purple)	540 (0.230)	Green (Purple)
19a	-	-	350 (2.020)	Violet (Yellow- green)	360 (1.501)	Violet (Yellow- green)	366 (1.312)		-	-	358 (0.892)	Violet (Yellow- green)	362 (0.810)	Violet (Yellow- green)	358 (0.714)	Violet (Yellow- green)
19b	308 (1.318)	Blue- green (Red)	-	-	-	-	-	-	-	-	304 (0.246)	Violet (Yellow- green)	308 (1.572)	Violet (Yellow- green)	602 (0.160)	Red (Blue-green)
19c	506 (0.289)	Green (Purple)	452 (0.286)	Blue (Yellow)	402 (3.43)	Violet (Yellow- green)	-	-	512 (0.379)	Green (Purple)	246 (2.251)	Violet (Yellow- green)	252 (1.302)	Violet (Yellow- green)	-	-
20a	498 (0.285)	Blue- green (Red)	494 (0.362)	Blue- green (Red)	-	-	496 (0.230)	Blue- green (Red)	496 (0.351)	Blue-green (Red)	500 (0.231)	Blue-green (Red)	494 (0.234)	Blue-green (Red)	406 (0.583)	Violet (Yellow- green)

							Pola	ar Organic so	olvent						Nonpo	olar Organic solvent
ye	Water DMF CHCl ₃ DMSO Acetone MeOH EtOH												EtOH	C ₆ H ₆		
D	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)	λ _{max} (ε _{max})	Color Abs. (Trans.)
20b	498	Blue-	576	Yellow(410	Violet	580	Yellow	576	Yellow(Gre	578	Yellow	578	Yellow-	510	Green
	(0.264)	green	(0.317)	Green-	(2.301)	(Yellow-	(0.286)	(Blue)	(0.420)	en-	(0.245)	(Blue)	(0.257)	green	(0.167)	(Purple)
		(Red)		Violet)		green)				Violet)				(Violet)		
20c	312	Violet	446	Blue	488	Green-	450	Blue	402	Violet	408	Violet	400	Violet	408	Violet
	(0.939)	(Yellow-	(0.328)	(Yellow)	(0.246)	blue	(0.245)	(Yellow)	(0.960)	(Yellow-	(0.365)	(Yellow-	(0.353)	(Yellow-	(0.764)	(Yellow-
		green)				(Orange)				green)		green)		green)		green)

Table (2D): Values of Maximum Absorption (nm) and Extinction Coefficients (mol⁻¹ cm⁻¹) of **Scheme (3A)**, comp. No. **(26A-D) & Scheme (3B)**, comp. No. **(32a-c)** in pure organic solvents.

							Pola	ar Organic so	olvent						Nonpo	olar Organic
															S	solvent
ye	W	/ater	D	MF	Cł	lCl₃	D	MSO	Ace	etone	Ν	/leOH	l	EtOH		C ₆ H ₆
	λ_{max}	Color	λ_{max}	Color	λ_{max}	Color	λ _{max}	Color	λ_{max}	Color	λ _{max}	Color	λ _{max}	Color	λ_{max}	Color
	(ε _{max})	Abs. (Trans.)	(ε _{max})	Abs. (Trans.)	(ɛ _{max})	Abs. (Trans.)	(ɛ _{max})	Abs. (Trans.)	(ɛ _{max})	Abs. (Trans.)	(ε _{max})	Abs. (Trans.)	(ε _{max})	Abs. (Trans.)	(ε _{max})	Abs. (Trans.)
26A	378	Violet	378	Violet	398	Violet	384	Violet	256	Violet	378	Violet	390	Violet	398	Violet
	(0.598)	(Yellow-	(1.402)	(Yellow-	(0.732)	(Yellow-	(1.111)	(Yellow-	(3.175)	(Yellow-	(0.441)	(Yellow-	(0.755)	(Yellow-	(0.576)	(Yellow-
		green)		green))		green)										
26B	498	Blue-	514	Green	406	Green	516	Green	314	Violet	500	Green	502	Green	514	Green
	(0.235)	green	(0.617)	(Purple)	(0.947)	(Purple)	(0.377)	(Purple)	(1.435)	(Yellow-	(0.349)	(Purple)	(0.357)	(Purple)	(0.211)	(Purple)
		(Red)						1000		green)						
26C	316	Violet	-	-	-	-	-		312	Violet	502	Green	498	Blue-green		
	(1.078)	(Yellow-							(0.933)	(Yellow-	(0.204)	(Purple)	(0.235)	(Red)	-	-
		green)								green)						
26D	408	Violet	442	Blue	498	Blue-	406	Violet	498	Blue-green	496	Blue-green	402	Violet	498	Blue-green
	(0.511)	(Yellow-	(0.330)	(Yellow)	(0.235)	green	(0.372)	(Yellow-	(0.235)	(Red)	(0.399)	(Red)	(0.625)	(Yellow-	(0.235)	(Red)
		green)				(Red)		green)						green)		
32a	-	-	440	Blue	440	Blue	440	Blue	-	-	404	Violet	398	Green	410	Violet
			(0.517)	(Yellow)	(0.374)	(Yellow)	(0.398)	(Yellow)			(0.319)	(Yellow-	(0.325)	(Purple)	(0.517)	(Yellow-
												green)				green)
32c	498	Blue-	440	Blue	408	Blue-	512	Green	-	-	504	Green	500	Green	410	Violet
	(0.351)	green	(1.023)	(Yellow)	(1.107)	green	(0.647)	(Purple)			(0.385)	(Purple)	(0.440)	(Purple)	(1.401)	(Yellow-
		(Red)				(Red)										green)

Table (3A): Values of absorption (nm) and extinction coefficients (mol⁻¹cm⁻¹) of Scheme (1A), comp. No. (6a-c, 8a-c, 9a-c & 10a-c), Scheme (2A), comp. No. (16a-c, 19a-c and 20a-c), Scheme (3A), comp. No. (26A-D) & Scheme (3B), comp. No. (32a-c) in aqueous universal buffer solution.

	Universal buffer 1.92 2.20 4.19 5.96 6.97 8.04 10.25 12															
0. 0	1	.92	2	2.20	4	.19	4	5.96	6	.97	8	.04	10).25	1	12
Co Co	λ_{max}	8 _{max}	λ _{ma} x	8 _{max}	λ_{max}	8 _{max}	λ_{max}	8 _{max}	λ_{max}	8 _{max}	λ_{max}	8 _{max}	λ_{max}	8 _{max}	λ_{max}	8 _{max}
6a	398	0.390	498	0.123	388 498	0.598 0.351	500	209	498	172	496	0.248	490	0.353	496	0.218
6b	502	0.176	504	0.140	498	0.227	498	0.396	498	0.236	496	0.252	494	0.302	394	0.511
	386	0.943	380	0.344	348	0.811	436	0.745	438	1.089	438	0.634	438	0.882	440	0.351
6c	526	0.214	530	0.118	526	0.258	530	0.323	528	0.403	530	0.307	528	0.415	532	0.179
8a	402 494	0.247 0.150	402 498 574	0.245 0.162 0.122	500 576	0.213 0.163	572	0.168	566	0.340	566	0.147	560	0.192	498 554	0.270 0.211
8b	498	0.214	498	1.902	498	0.250	500	0.511	496	0.197	496	0.143	498	0.171	500	0.163
8c	366	1.601	362	0.813	364	1508	436	0.666	434	0.729	432	0.355	430	0.260	440	0.384
90	360	1.516	360	1.640	358	1804	360	2.157	356	1.380	536	0.143				
10a	316 396 514	1.189 0.268 0.144	316 402 512	1.924 0.397 0.230	274	2.275	314 430 532	1.644 0.362 0.229	286	2.114	314 438	1.499 0.291	252	1.471	360	0.895
10b	402	0.443	396	0.263	276	2.738	432	0.233	250	1.683	432	0.194	256	2.352	254	1.954
10c	400	0.301	502	0.119	276	1338			442	0.229	434	0.427	250	2.536	436	0.388
16a	396	2.022	396	0.959	376 506	1.016 0.538	504	0.513	502	0.442	503	0.389	500	0.365	350 430 506	0.784 0.529 0.368
16b	320	2.111	322	1236	390	0.744	424	1.566	432	0.459	430	0.869	436	0.433	350	0.970
160	416	1.230	<u>414</u>	0.734	514	0.325	3		520	0.220	416	0 701	416	0.269	526	0.040
100		1.107		0.701		0.020			020	0.220	516	0.501	516	0.187	020	0.200
19a	360	1.020	358	1.190	356	0.909	356	1.308	358	2.443	472	0.255	262	1.801	486	0.235
19b	248	3.263	252	2.874	248	3.311	308	1.803	252	3.374			256	2.671	256	0.254
	308	1.884	308	1.674	286	2.937										
19c	404	0.278	400	0.218	510	0.291	434	0.290	-		434	0.375	250	1.572	256	0.135
	510	0.172	508	0.152			514	0.246			510	0.323			432	247
20a			250	1.947			252 100	2.223	482	0.452	488	0.184	254	2.402	256	2.636
20h	248	2 4 2 2	308	0 253	402	0 372	248	1 950	402	0.421	502	0 195	256	1 717	490 254	1 610
200	402	0.210	500	0194	500	0.281	400	0.187	498	0.345	570	0.185	500	0.191	498	0.191
	502	0.157	584	0.134	578	0.241	580	0.145	574	0.309						
20c	314	1.202	230	2.131	276	2.985	312	1.085	256	4.000	250	2.317	250	1.535	250	1.952
	398	0.489	398	0.272			434	0.397	432	0.564	434	0.294	436	0.247	438	0.311
26A	390	1.449	390	0.65	-	-	396	3039	-	-	364	1.125	-	-	-	-
26B	404	0.524	242 400	2.87 0.34	252 502	2.879 0.281	256 298 504	2.672 1.369 0.308	246 504	2.783 0.194	502	0.474	498	0.384	352 504	1.000 0.504
26C	-	-	318	1.62	-	-	258 294	3.436 2.498	-	-	262	4.000	246	3.913	346	1.060
26D	252	3.436	248	1.55	256	2.543	252	1.945	248	3.101	252	3.436	272	1.790	272	2466
	432	0.375	400	0.21	498	0.196	496	0.143	396	0.249	506	0.328			444	0.395
	506	0.328	508	0.15			000	0.007	500	0.190	40.1	0.000	400	0.40	0.10	0.001
32a	274 400	1.002 0.346	502	0.245			262 296	0.827 0.635	434	0.145	434	0.260	438	0.18	343	0.221
32b	398	0.349			384	0.302	262 296	2.256 1.787	250 434	1.081 0.149	238	0.152				
32c	270	2.261	400	0.539	508	0.279			504	0.260	498	0.751	494	257	296	0.411
	404	0.833														

Table (3B): The variation	of absorbance in λ_{max} characteristic for Scheme (1A) , comp. No. (6a- c, 8a-c, 9a-c &10a
c) & Scheme (1B), comp	No. (16a- c, 19a-c & 20a-c) in different buffer solution.

Comp.							Abso	orbar	nce							
NO.	6a	6b	6c	8a	8	b	8c	98	a	9b	9	с	10	a	10b	10c
∧ _{max} pH	λ ₄₂₈	λ_{500}	λ ₅₃₀	λ 498	λ5	500	λ_{440}	λ3	854	λ ₃₃₆	λε	604	λ5	514	λ 432	λ 442
1.92	0.272	0.179	0.209		0.2	11	0.506	1.8	27	1.054	0.0	75	0.1	44	0.334	0.21
2.20	0.149	0.143	0.118	0.162	0.1	19	0.303	0.6	62	1.143	0.0	72	0.2	28	0.203	0.138
4.19	0.429	0.225	0.253	0.214	0.2	49	0.635	1.5	95	1.575	0.2	32	0.2	36	0.374	0.104
5.96	0.211	0.393	0.323	0.174	0.5	11	0.679	1.0	34	1.648	0.1	13	0.2	25	0.233	0.387
6.97	0.177	0.234	0.397	0.340	0.1	95	0.734	0.2	97	1.169	0.1	29	0.2	59	0.125	0.229
8.04	0.251	0.248	0.307	0.150	0.1	42	0.356	0.7	15	1.346	0.1	19	0.2	11	0.194	0.417
10.25	0.360	0.294	0.410	0.216	0.1	17	0.26	0.4	68	0.996	0.1	12	0.3	47	0.357	0.262
12	0.288	0.340	0.181	0.270	0.1	63	0.393	1.1	56	1.335	0.1	39	0.3	06	0.242	0.382
рКа	4.1	6.0	7.0	7.0	6.	0	7.0	4.2	2	6.0 8 1	4.	2	7.	0	4.2	6.0 8.0
Comp.	10.2		10.2				Abso	orbar	nce	0.1			10		10.2	0.0
No.	16	5a	16b	16c		19a	19)b		19c		20	а		20b	20c
λ _{max} pH	λ	500	λ 436	λ ₅₂₀		λ ₃₆₀	ο λ	308		λ 510		λ4	88		λ ₅₀₀	λ ₄₃₂
1.92	0.7	'12	1.753	0.505	5	1.02	2 1.8	84		0.172		0.1	76	().159	0.323
2.20	0.3	92	1.05	0.338	3	1.18	1 1.6	674		0.152		0.1	1	(0.194	0.19
4.19	0.	54	0.858	0.319	3	0.89	4 2.4	67		0.291		0.2	23	().281	0.602
5.96	0.	52	2.237	0.939)	1.26	5 1.8	303		0.249		0.13	31	(0.155	0.398
6.97	0.4	45	0.746	0.22		2.42	2 1.5	34		0.134		0.4	42	0	0.346	0.564
8.04	0.3	891	1.339	0.493	3	0.69	8 1.9	73		0.323		0.18	84	0	0.195	0.294
10.25	0.3	865	0.686	0.184		0.27	5 1.0	941	4	0.24	Constant of the local division of the local	0.19	99	0	0.191	0.249
12	0.3	878	0.969	0.292	2	0.49	2 0.8	859		0.209		0.2	11	0	0.191	0.314
рКа	4.	.0 -	6.0 8.0	6.0 8.0		2.2 7	4	.2 3		4.2 8.0		4.: 7.0	2 0		4.1 7.0	4.1 7.0

Table (3C): The variation of absorbance in λ_{max} characteristic for **Scheme (3A)**, comp. No. **(26A-D)** in different buffer solution.

Table (3D): The variation of absorbance in λ_{max} characteristic for **Scheme (3B)**, comp. No. (**32a-c)** in different buffer solution.

Comp. No.		Abso	rbance	
λ_{max}	26A	26B	26C	26D
рН	λ 390	λ_{500}	λ ₃₄₆	λ ₅₀₈
1.92	1.449	0.286	0.931	0.326
2.20	0.65	0.211	0.503	0.152
4.19	0.26	0.282	0.631	0.187
5.96	3.19	0.311	0.754	0.135
6.97	1.943	0.196	0.41	0.179
8.04	1.008	0.475	0.661	0.326
10.25	1.084	0.384	0.599	0.109
12	0.654	0.351	0.907	0.192
	6.0	6.0	6.0	4.0
pKa	10.0	8.0	8.0	8.0

Comp. No.	Absorbance									
λ_{max}	32a	32b	32c							
рН	λ ₄₃₈	λ ₃₉₈	λ ₅₀₈							
1.92	0.266	0.349	0.446							
2.20	0.271	0.401	0.313							
4.19	0.205	0.282	0.279							
5.96	0.198	0.875	0.815							
6.97	0.143	0.158	0.256							
8.04	0.258	0.203	0.728							
10.25	0.189	0.087	0.245							
12	0.22	0.174	0.391							
	2.3	2.1	6.0							
рКа	8.1	6.0	8.0							
		8.0								

GSJ© 2020 www.globalscientificjournal.com

Table (4): HOMO-LUMO energy levels for the suggested molecules Scheme (3A&E	3),
comp. No. 25A, 26E & 32b	

Code	Е _{номо} (au)	Е _{номо} (ev)	E _{LUMO} (au)	E _{LUMO} (ev)	E ₀₋₀
25A	-0.09927	-4.588	-0.16557	-2.701	1.804
26E	-0.16846	-4.5840	-0.12035	-3.2748	1.3092
32b	-0.1683	-4.5799	-0.1440	-3.9208	0.6591

Table (5): Characterization Data of Scheme (1A), comp. No. (6a-c, 8a-c, 9a-c & 10a-c).

Comp.		Na	ture of Prod	lucts	% Ca	alcd.(Fo	und)	95% EtOH Absorption (1x10 ⁻³ g/mol.)			
No.	M.P. °C	Yield %	Color	Mol. Formula (Mol.wt)	С	н	N	λ _{max} (nm)	^{ɛ_{max} (cm⁻¹mol⁻¹)}		
6a	181	84	Red	C ₂₈ H ₂₄ CIN ₅ O (481)	69.78	5.02	14.53	418 514	743 505		
6b	196	87	Dark red	C ₃₂ H ₂₆ CIN ₅ O (531)	72.24	4.93	13.16	504 394	246 366		
6c	201	79	Reddish pink	C ₃₂ H ₂₆ CIN ₅ O (531)	72.24	4.93	13.16	526 414	481 753		
8a	172	67	Reddish Brown	C ₂₉ H ₂₆ IN ₅ O (587)	59.29	4.46	11.92	574 496 396	1590 1800 247		
8b	190	77	Pale red	C ₂₉ H ₂₆ CIN ₅ O (587)	59.29	4.46	11.92	498 392	197 234		
8c	201	81	Dark brown	C ₂₉ H ₂₆ CIN ₅ O (587)	59.29	4.46	11.92	-	-		
9a	159	66	Orange	C ₂₀ H ₁₆ CIIN ₄ O (490)	48.95	3.29	11.42	358	738		
9b	134	72	Violet	C ₂₄ H ₁₈ CIIN ₄ O (540)	53.30	3.36	10.36	360	1107		
9с	146	86	Pale brown	C ₂₄ H ₁₈ CII N ₄ O (540)	53.30	3.36	10.36	358	460		
10a	225	59	Deep Orange	C ₂₃ H ₁₉ I ₂ N ₅ (619)	44.61	3.09	11.31	510 314	212 1055		
10b	215	70	brown	C ₂₇ H ₂₁ I ₂ N ₅ (669)	48.45	3.16	10.46	522 390	235 339		
10c	225	69	Brownish orange	C ₂₇ H ₂₁ I ₂ N ₅ (669)	48.45	3.16	10.46	506 394	251 382		

Comp		<u>N (12</u>	ature of Produc	cts	% 0	ınd)	
No.	M.P. °C	Yield %	Colour	Mol. Formula (Mol.wt)	с	н	N
2a	132	67	Brown	C ₁₈ H ₁₉ IN ₄ O ₂ (450)	48.01	4.25	12.44
2b	128	79	Dark Brown	C ₂₂ H ₂₁ IN ₄ O ₂ (500)	52.8	4.23	11.2
4	134	82	Yellowish Brown	C ₂₁ H ₁₉ CIN ₄ O ₂ (394)	63.88	4.85	14.19
5	5 129		Red	C ₂₁ H ₁₇ CIN ₄ O (376)	66.93	4.55	14.87
7a	136	80	Reddish Brown	C ₁₈ H ₁₇ IN ₄ O (432)	50.02	3.96	12.96
7b	132 84		Brownish Red	C ₂₂ H ₁₉ IN ₄ O (482)	54.78	3.97	11.62
7c	131	86	Yellowish Brown	C ₂₂ H ₁₉ IN ₄ O (482)	54.78	3.97	11.62
12	125	81	Reddish Brown	C ₁₆ H ₁₄ N ₂ O ₄ (298)	64.42	4.73	9.39
13	166	77	Violet	C ₁₆ H ₁₂ N ₂ O ₃ (280)	60.56	4.32	9.99
14a	139	70	Pale Brown	C ₂₁ H ₁₆ CIN ₃ O ₃ (485)	51.98	3.32	8.66
14b	141	75	Brownish Orange	C ₂₅ H ₁₈ IN ₃ O ₃ (535)	56.09	3.39	7.85
14c	240	80	Violet	C ₂₅ H ₁₈ IN ₃ O ₃ (535)	56.09	3.39	7.85
15	202	88	Brownish Orange	C ₂₂ H ₁₉ IN ₄ O (295)	65.08	4.44	14.23
18	187	83	Reddish Orange	C ₂₄ H ₁₉ IN ₄ O ₂ (522)	55.19	3.67	10.73

Table (6): Characterization Data of Scheme (1A), comp. No. (2a, 2b, 4, 5 & 7a-c), & Scheme (1B) comp. No. (11, 12, 13, 14a-c, 15, 17).

Table (7): Characterization Data of Scheme (3B), comp. No (27, 28, 29A-B, 30, 12 & 31A, B).

	Nature of	f Produc	cts		% Calcd. (Found)						
Comp. No.	M.p. °C	Yield %	Color	Mol. Formula (Mol. Wt.)	С	н	Ν				
27	139	67	Greenish Brown	C ₁₉ H ₁₇ IN ₄ O ₂ (460)	49.58	3.72	12.17				
28	146	74	Deep Dark Red	C ₃₈ H ₂₉ I ₂ N ₇ O ₂ (869)	52.49	3.36	11.28				
29A	187	65	Reddish Brown	C ₄₃ H ₃₉ I ₂ N ₇ O ₄ (971)	53.15	4.05	10.09				
29B	179	71	Deep dark brown	C ₃₉ H ₃₉ Cl ₂ l ₂ N ₇ O ₂ (950)	49.18	3.07	10.29				
30	201	81	Brown	C ₃₉ H ₂₇ I ₂ N ₇ O ₂ (879)	53.26	3.09	11.15				
31A	198	77	Greenish brown	C ₃₉ H ₂₇ I ₂ N ₇ O ₂ (877)	53.38	2.87	11.17				
31B	189	75	Reddish Yellow	C ₃₉ H ₂₆ IN ₇ O ₂ (751)	62.33	3.49	13.05				

GSJ: Volume 8, Issue 9, September 2020 ISSN 2320-9186

								95%	6 EtOH		<u>ou 1).</u>								
No.	Nature of Products		% Calcd (formed)			Abs (1x10	bsorption 10 ⁻⁴ g/mol.)			Natu	Nature of Products			% Caled (found)			Absorption spectra in		
Comp.	M.P. °C	Yield %	Color	Mol. Formula (Mol.wt)	с	н	N	λ _{max} (nm)	ε _{max} (cm⁻ ¹mol⁻¹)	np. No					78 04	(1x10 ⁴g/mol.)			
16a	169	64	Brown	C ₂₁ H ₁₄ N ₃ O ₃ (483)	52.19 (52.20)	2.92 (2.94)	8.70 (8.72)	504 390	660 1.276	Con	M.P.	Yield	Color	Mol. Formula	с	н	N	λ_{max}	ε _{max} (cm ⁻
16b	164	77	Dark Brown	C ₂₅ H ₁₆ N ₃ O ₃ (533)	56.30 (56.32)	3.02 (3.04)	7.88 (7.89)	400	709		°C	%		(Mol.wt)				(nm)	'mol [°])
16c	159	79	Pale Orange	$C_{25}H_{16}N_{3}O_{3}$ (533)	56.30	3.02	7.88	522 412	491 758	8a	127	61	Red	C ₃₁ H ₂₇ IN ₆ (610.50)	60.99 (60.75)	4.46 (4.35)	13.77 (13.34)	460	698
19a	176	81	Reddish Orange	C ₂₁ H ₁₇ CIN ₄ O ₂ (392)	64.21 (64.22)	4.36 (4.37)	14.26 (14.27)	356	829	8b	170	65	Red	C ₃₅ H ₂₉ IN ₆ (660.56)	63.64 (63.45)	4.43 (4.25)	12.72 (12.52)	498	1010
19b	181	89	Orange	$C_{25}H_{19}CIN_4O_2$ (442)	67.80 (67.81)	4.32 (4.34)	12.65 (12.67)	306	1586	9a	155	74	Red	C ₃₈ H ₃₅ I ₂ N ₇ (843.56)	54.11 (54.05)	4.18 (4.34)	11.62 (11.74)	520	2443
19c	186	79	Yellow	C ₂₅ H ₁₉ CÍN ₄ O ₂ (442)	67.80 (67.79)	4.32 (4.33)	12.65 (12.66)	250	1323	9b	150	59	Red	C ₄₂ H ₃₇ N ₇ I ₂ (639.81)	78.85 (78.12)	5.83 (5.90)	15.32 (15.42)	480	670
20a	164	67	Red	C ₂₅ H ₁₉ CIN ₄ O ₂ (391)	64.54 (64.56)	3.87 (3.88)	14.34 (14.36)	492	235	9c	130	59	Pale	$C_{42}H_{37}N_7I_2$	78.85	5.83	15.32	500	1780
20b	159	82	Reddish Brown	C ₂₅ H ₁₉ CIN ₄ O ₂ (440)	68.11 (68.13)	3.89 (3.92)	12.71 (12.73)	580 500 398	255 289 359	9d	185	68	Brown	C ₄₂ H ₃₇ N ₇ I ₂ (639.81)	78.85	(3.90) 5.83 (5.90)	15.32	475	612
20c	166	75	Dark Brown	C ₂₅ H ₁₉ CIN ₄ O ₂ (440)	68.11 (68.13)	3.89 (3.94)	12.71 (12.72)	400 312	353 798	9e	185	75	Red	C ₄₆ H ₃₉ N ₇ I ₂ (689.87)	80.09 (80.45)	(5.90) 5.70 (5.28)	14.21	478	1593

 $C_{23}H_{16}IN_5O$

(520)

Dark

brown

25D

225

77

53.09

(53.11)

3.29

16.15

(3.30) (16.17)

•	Nature of Products				% Calcd. (Found)										95% EtOH		
omp No.	M.p.	Yield	Color	Mol. Formula	C	н	N	d d		Nature 0f Products				alcd. (Fo	ound)	(1x10 ⁻⁴ g/mol.)	
с С	°C	%	COIOI	(Mol. Wt.)	<u> </u>		IN	Con	M.p.	Yield	Oalar	Mol.				λ _{max}	د ٤ _{max}
22A	155	79	Brownish Orange	C ₁₆ H ₁₂ IN ₃ O (389)	49.38 (49.40)	3.11 (3.13)	10.80 (10.82)		°Č	°C %	Color	(Mol. Wt.)		н	IN	(nm)	(cm ² mol
22B	148	69	Brownish Red	C ₁₆ H ₁₃ IN ₄ O (404)	47.54 (47.55)	3.24 (3.25)	13.86 (13.87)	26A	198	70	Dark brown	C ₃₆ H ₂₉ I ₂ N ₇ (813)	53.15 (53.16)	3.59 (3.60)	12.05 (12.06)	390	755
22C	134	78	violet	C ₁₉ H ₁₆ IN ₃ O ₂ (445)	51.25 (51.26)	3.62 (3.63)	9.44 (9.45)	26B	201	67	Reddish orange	C ₂₉ H ₂₃ I ₂ N ₇ O (739)	47.11 (47.12)	3.14 (3.15)	13.26 (13.27)	396 504	373 356
22D	153	77	Greenish Brown	C ₁₉ H ₁₇ IN ₄ O ₂ (460)	49.58 (49.59)	3.72 (3.73)	12.17 (12.18)	26C	210	77	Pale Brown	C ₃₀ H ₂₄ I ₂ N ₆ O (738)	48.80 48.81)	3.28 (3.29)	11.38 (11.39)		
23	195	83	Muddy Brown	C ₂₁ H ₁₉ IN ₃ O (456)	55.28 (55.30)	4.20 (4.21)	9.21 (9.22)	26D	200	82	Brown	$C_{30}H_{24}I_2N_6O$ (622)	42.40	3.07	11.24	402	625
24A	225	67	Brownish Red	C ₂₉ H ₂₃ IN ₆ O (598)	58.20 (58.22)	3.87 (3.88)	14.04 (14.05)	32a	165	77	Brownish vellow	C ₄₆ H ₃₄ I ₂ N ₈ O ₂ (984)	56.11 (56.12)	3.48 (3.49)	11.38	402	322
24B	198	73	Red	C ₂₂ H ₁₇ IN ₆ O ₂ (524)	50.40 (50.42)	3.27 (3.28)	16.03 (16.04)	32b	171	71	Yellowish brown	C ₅₀ H ₃₆ I ₂ N ₈ O ₂ (1034)	58.04 (58.05)	3.51 (3.52)	10.83	248	865
24C	234	77	Brown	C ₂₂ H ₁₉ IN ₅ O ₂ (524)	51.58 (51.59)	3.74 (3.75)	13.67 (13.68)	32c	179	73	Dark red	$C_{50}H_{36}I_2N_8O_2$	58.04	3.51	10.83	390 500	568
24D	238	75	Dark Brown	C ₂₂ H ₁₉ IN ₅ O ₂ (524)	50.11 (50.12)	3.82 (3.83)	15.94 (15.96)					(1034)	(30.00)	(3.32)	(10.04)	500	440
25A	225	82	Deep Dark brown	C ₂₉ H ₂₁ IN ₆ (580)	60.01 (60.03)	3.65 (3.64)	14.48 (14.50)										
25B	187	67	Dark red	C ₂₂ H ₁₇ IN ₆ O (506)	52.19 (52.20)	2.99 (3.98)	16.60 (16.61)										
25C	221	72	Brown	C ₂₃ H ₁₆ IN ₅ O (504)	54.67 (54.68)	3.19 (3.20)	13.86 (13.87)										

Table (10): Characterization Data of Scheme (3A), comp. No Table (11): Characterization Data of Scheme (3A&3B), comp. No (26A-D) & (32a-c). (22A-D, 23, 24A-D & 25A-D),

45

')