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ABSTRACT

In this paper, we study the primary resonances of a sandwich beam piezoelectric/elastic/piezoelectric subjected to two excitation frequencies.
For this purpose, the feedback potential via the piezoelectric sensor and actuator is used. The dynamic model of the sandwich beam results
in a differential equation not linear, the Galerkin approximation allows us to discretize this equation of movement. The multiple scale method
is used to obtain solutions approached for strong excitation. Analytical frequency-amplitude relationships and phase-amplitude are given. The
static and dynamic stability criteria are studied, the critical displacement and the associated excitation amplitude are given analytically. The
effects of feedback parameters in this work are analyzed

The first page should be used only for Title/ Keyword/ Abstract section. The main paper will start from second page.

1INTRODUCTION

Adaptive structures with piezoelectric layers are widely used for vibration control and also for mechanical systems. vibration control
and also for mechanical systems [1-3]. However, the work carried out on this type of structure with piezoelectric layers or corrective
layers is based on linear theory. Thus, modelling the non linear behaviour when subjected to higher loads and large excitations is not
accurate. excitations is not accurate. When vibration is introduced into a structure, it can reach a dangerous amplitude, so it is
necessary to control and reduce these vibrations reduce these vibrations that are harmful to the structure. Many researchers have
addressed the question in an attempt to model the dynamic behaviour of beams and plates with piezolaminate layers, Moita et al [2],
who used the updated Lagrangian formulation combined with the Newton-Raphson technique. combined with the Newton-Raphson
technique. Gao [3] and Shen proposed a technique based on the Lagrangian and the differential principle of virtual velocity. In these
earlier earlier studies, finite element formulations were proposed for nonlinear transient transient vibrations of composite structures
with piezoelectric materials. Active vibration control of piezoelectric/elastic/piezoelectric sandwich beams has been studied by S.
Belouettar et al [1] using a simplified model for single-frequency excitation. Using structures with piezoelectric actuators and sensors
and taking into account taking into account geometrical non-linearities, a model for the control of nonlinear vibration control model
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has been obtained using proportional feedback control derived from of the electrical potential. A mathematical methodology, based
on the method of multiple scales for non-linear vibration control and stability studies have been developed as part of this work.
developed as part of this work. A system of complex amplitude and phase equations taking account of geometric non-linearity
parameters and the piezoelectric effect has been obtained.piezoelectric effect. Simultaneous resonance control has been developed.
Feedback effects have been analysed for small and large vibration amplitudes of sandwich beams. Nowadays, a number of authors
have devoted their work to the study of microstructure vibrations Younis and Nayfeh [4]; Farokhi et al. [5]; Askari [6]; Askari et al [7];
Farokhi and Ghayesh, [8 9]; Ghayesh and Farokhi, [9 10]; Han et al [11]; Ghorbanpour Arani et al [12]. The harmonic response for a
microbeam was obtained by Younis and Nayfeh [13]. They studied the stability of the amplitude corresponding to the frequency
response using the perturbation method. Various methods were used to solve the non-linear equation of the micro-madriers.
Younesian et al [14 15] used an innovative innovative method to study the generalised form of the nonlinear oscillator. Xia et al [16]
applied Hamilton's principle. The perturbation technique and the method of multiple scales were used to study the behaviour of
microbridge electrostatic actuators [17]. In a recent study, Hassanpour et al investigated the free and forced nonlinear vibrations of a
microbeam numerically and experimentally vibrations of a micro-beam numerically and experimentally [18 19]. In this based on the
Euler-Bernoulli beam model, we propose to study the vibratory behaviour of a behaviour of a Duffing-Van der Poll type beam subjected
to two excitation frequencies. In order to control the resonant amplitudes of vibration and thus in extending service life of laminated
composite beams under periodic load or impact, the damping in the core layer play an important role. At the constituent level, the
energy dissipation in fibre-reinforced composites is induced by different processes such as the viscoelastic behaviour of the matrix,
the damping at the fibre-matrix interface, the damping due to damage, etc. At the laminate level, damping is depending on the
constituent layer properties as well as the layer orientations, interlaminar effects, stacking sequence, etc Most of the studies of
laminated composite beams are devoted to linear vibration and damping analysis. Earlier works on this subject are done by Gibson
and Plunkett [1] and Gibson and Wilson [2]. A good overview on the available literature dealing with the vibration behaviour in
presence of viscoelastic material can be found in the survey articles by Nakra [3,4]. In the earlier works, some of the important
contributions are the works of Heng et al. [5], He and Rao [6], Rikards [7] and Bhimaraddi [8]. In all these works, a complex modulus,
which consists of a real part representing elastic stiffness and an imaginary part representing dissipation, has been widely used to
model the behaviour of linear viscoelastic materials under harmonic vibrations. With respect to the introduction of geometrical
nonlinearity for beams with viscoelastic cores, Kovac et al. [9] and Hyer et al. [10,11] studied the nonlinear vibration of a damped
sandwich beam. This study is based on a multi-mode Galerkin procedure coupled with the harmonic balance method. Sandwich and
laminated composite beams have been analysed using the classical models developed for one-layer beams (solid beams)

These models are based on a theory that neglects transverse shear and normal strains and leads to the classical laminate theory (CLT)
[12,13]. Due to the drawbacks of the CLT, a first order shear deformation theory (FSDT) has been proposed to take into account the
transverse shear deformation [14—16]. The effects of the transverse shear deformation are pronounced for composite beams because
of the high ratio of the extensional modulus to the transverse shearing modulus. The FSDT is widely used, and assumes a constant
transverse shear strain in the thickness direction [17]. Therefore, a shear correction factor is generally used to adjust the transverse
shear stiffness in dynamic analyses of laminates [18—21]. To avoid the use of a shear correction factor, higher order shear deformation
theories (HSDTs) have been developed [22-24]. These theories are more realistic, since they give zero transverse shear stress condition
at thetop and bottom surface boundaries of the structure. The HSDTs have been successfully and extensively applied to design of
multi-layered structural components. The discontinuity of some mechanical properties in the thickness direction represents a flaw in
these theories. Also, it should be emphasised that recent research [25,26] has shown soft-core sandwich plates. The HSDTs are
therefore of limited values for analysing problems in which an accurate description of the transverse normal stress distribution and
related consequences are of interest. To overcome such limitations, Kapuria et al. [27] have used zig-zag theories, satisfying the inter-
laminar continuity of the transverse shear stresses, to predict the dynamic and buckling responses of laminated beams with arbitrary
layouts. The aim of this work is to develop a simple consistent theory for the nonlinear vibration analysis of laminated composite
beams with large amplitudes. This theory couples the harmonic balance technique to Galerkin procedure. The nonlinear geometrical
effect due to axial forces caused by axial restraints is modelled using higher order zig-zag theories, which incorporate various shear
function models for the shear deformation in the core.

2 MATHEMATICAL FORMULATION

u'(x,y,z,t)=u'(x,y,t) + (- 2,)g,

Vi(x,y,2,t)=0 (1)
W (X, Y,2,t) =W (X, y,t)
withi=¢,A S S = upper piezoelectric patch layer (Sensor)
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e = elastic intermediate layer (Core)
A = lower piezoelectric patch layer (Actuator)
@y, @, = rotation of the normal of the median plane of the central layer
Z; = ordinate of the median axis of the with layer

oW
P, (X, Y)Z—a*

X 1

oW dz.=-2,== 2
o, )=-3 et =2 =5 () ()

oW
(PZ(X, y):— =O
oz

h h
Us (X, Y, =) =U (%Y, )
s 2 2 (3)

h h
uA(X! y,_?s) = Ue(X, yv_Es)

Hence the displacement fields in the layers

U (63,2, =1 (03,0 - (2 =250,
U®(X,Y,z,t) =uy (X Y, t) + zo(X, y,t) )

W (X, Y, 2,8) = Wy (X, Y1)

2.2 DEFORMATION FIELD

Strain fields are derived from displacement fields. Considering uniaxial displacements, we have :

h h 1
e (XY, t)=uU, +—=p ——=W_ —(2—2. )W, +—W*
1S( y ) 0,x 2 (p,x 2 XX ( S) XX 2 X

£e(X, Y, 1) =Ug, + 20, (5)

h h 1
glA(X’ y!t) = uO,x _?eqj,x + ?S\N,xx - (Z - ZA)\N,xx + EWZ,X

2.3 PLANE STRESS STATES
At any point M in plane stress, the equations of Elasticity can be written as follows

o| [Ci Cci ci 0 0 Cilfa
Oy C; Cp Ciz 0 0 Culle
0 | |CE CE cE o 0 Ccills (6)
0 0 0 0 Ci ct ollo
0 0 0 0 Cfs Cng 0 (|0
Oy _ClE6 C2E6 (33'56 0 0 C3E3_ &
0, = ClElgl + ClEzgz + C1E3‘93 + ClEege (7.9
0, =Che +Che, +Crhe, +Cre, (7.2)
0=CLe +CLe, +Che, +Ché, (7.3)
0, =Cle +Che, +Che, +Cheg (7.4)

Relation (7c) allows us to derive the parameter

GSJ© 2024
www.globalscientificjournal.com

175



GSJ: Volume 12, Issue 8, August 2024

ISSN 2320-9186 176
E E E
E3=— S + %g + Ca L g 8
3 CE 1 CE 2 CE 3 ( )
33 33 33

By replacmg in 7a) (7b), and (7d) we have:

C:C CECE
C1Ez 13523J 2+[C1%_ éESGJSG
33

2
E~E
o, = {ClEz C23C13J + CZEZ ) &, +[C2EG _ C23C36 Jgs

_| ~E
o,=|C;—

Cfs Cs
2
CEicE CECE Ca
= [Cé 36 j [CZEG 36 2 ng n CGEG ( CE) ‘("6
33
Let's ask
(cs) (c5) (c5) 9
N 13 . 23 * E
Cu = C1E1 CE sz = CzEz E Cse = Cee_ CE (3)
33 33 33
E~E E~E
C* —CE_ CsCss Cr =CE_ CseCis . ¢ CLCL
12 — Y12 CE 16 — ™16 CE Cze = Cze - E
33 33 Cxn
Equation (9) therefore becomes:
Oy Ch, Cp Cplla
o, 1=C, Cp Cxli& (10)
O Cs Cx Ce|l&s

(Belouettar et al., 2008), (Benjeddou et al., 1997), (Azar et al., 2008), (Daya et al., 2005) in their work introduced the effect of geometric
non-linearity by assuming moderate rotations. The non-linear relationship between strain and displacement is given by :

1 1
8:€O_Z(Vv,xx+§vv,xx\N,x2)anng=u,x+§vv,x2 (11)

The shear effect, which is carried by the axis (Oy), is neglected. The coupling effects between the mechanical and electrical properties
are given by the following systems:

D;) & €5 (12)

2 z
X _ 3B . at Cjs
€y =€y T 163 =65 — ess* 1 =Cy— =
Cs3 Css C33
O = Cé‘—etE (13)
D=es+<cE

o : Stress vector

€ . Linear deformations

e
[ ] : Matrix of electrical constants or stresses
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t
S
[ ] : Dielectric permittivity matrix for constant deformation
C . Elasticity matrix
According to Opinathan et al, 2000, the electric potential in the electric layer in the elastic layer is a function of the electric potentials

at the surface and whether the circuit is open or closed. For a core with open-circuit electrodes, the potential is unknown.

* *
D, =eyet+e, By

(14)
Dy(z2)=0= €6 =— €5 Ey
E3 :_igou,x +iz(w,xxlw,xxw,x2) (15)
€33 Ca3 2
By definition, the electric field derives from a potential E= —grade
[dp=—[Edz (16)
z Z_
e, 1
Ey(2) =~ =gy —2(W,, + =W, W,*)] (17)
€33 o2z
;1 1 2
E(Zs):__[ux+_wx (1_ZSWXX)_ZSWXX]
w2 ’ ' e 1 ., . (18)
N = E(Zi):__[u,x+EW,x (1_Zivv,xx)_ziw,xx]l| :A,S
E(ZA)z_i[ux—’—lsz(l_ ZAWxx)_ZAWxx] 633
33 ' 2 ' I :
op € 1
3= T E3=_ B [u,x+_W,>< (1_ZW,><><)_ZW,X><]
0z Sa33 2 (19)
e, 1 = A ¥ 1
Ap="3h[u +-w>l-zw )-zw, ] |22_ i[u +w 2 (l-zw, )-zw,]
» ) 2 ) ! ’ h X X iYxx iV xx

TR 2

The core of our sandwich beam is assumed to be conductive with a uniform potential fixed at, zero. The potential in the transducer is
given by the expression

33

Ps = A(p=e_i)1hs |:u,x +%\N,x2(l_ ZSVV,XX)_ ZSV\I,XX}

. S . 1 5 i
:>¢S =A¢=€_*hs u,x+\N,x\N,x(l_ ZS\N,xx _E\N,x ZSVV,XX _ZSVV,XX
33

The potential at the actuator is assumed to depend on the sensor potential by proportional feedback control according to the law :

@p =G0 +Gyps (21)

Using equations (12) and (13), the electric fields in the sensor and actuator and following Azrar et al, (1993) are written as follows:

e, 1
B =25+ 22—z )[w,, + W, W,
s S 2
e, 1
E&‘A = &-’— il (Z - ZA)[W,xx +_W,x2W,xx]
s E33 2

(22)

2.4 VARIATIONAL FORMULATION
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The equations of a piezoelectric continuum can be derived from Hamilton's Principle where the Lagrangian is adapted to include elec-
trical and mechanical contributions.

4
s[mdt=0 énzjaagdv (23)
t %

t L
ST = (¢S), j j [USU + Wow] dxdt

4 0

L t L ty
ST =(pS). | [usul; - [ dsudtldx+(pS). | [wow]; — [ viswdt]dx
0 ty 0 f

=6T = (qoS)*JL.[U'&u AWSw]dxdt (24)

The equation (11) in (25) gives us :
1 2
W =[0,020V =[ 6,55, — 2(W,, +o W v
\Y \%
1 2
W =[o,0eaV =[ 0,01, — 2(w,, W5V (25)
\% \%

W = [ordedv W = [o,e0V = o300z, ~2(w,, +%w,xxwvxz)]dv
\% \Y \

(26)

= j 0,6le, —2(W,,, +%W,XXW,XZ)]dVA +j 0,0le, —2(W,, + %vvyxxwyxz)]dvC +

Va Ve

1 2

[ 0, = 2w S w2 )]dVs
VS
= [ 08,0V, + [ 085,0V; + [ 005,dV,

Va Vg Ve (27)

__[ Uléz(vv,xx + %WXXWXZ)dVA - j Glaz(w,xx + %\N,xxsz)dVS - j Glsz(w,xx + %Vv,xxvv,xz)dvc
Va Vs Ve

We know that dV =S.d, and dV, =S,d,

L
1

N} = .[alsségodx M = __[ o Sz(W,, +§WYXXWVXZ) dv,
0 Vs
r A 1 2

NlA = J015A580dx Ml = _I o é‘Z(\N,xx + E\N,xxvv,x ) dVA
0 Va
¢ C 1 2

NS =J'alscégodx M, = —j oozI(W,, +EW,XXW,X ) dV,
0 Ve

Determination of Normal force N
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L L
N, = _[6185550dx = J. S (C;,¢ — €5, E3 )dg,dx

L
= [ S5/ e8e,dx - j S.e:,ES Se,dx
0
L (28)
:I sCr (6 = Z(W, +;w W, ?))Se,dx — fS e ( g05+ (z z )(W,xx+%w,xxw,x2))5‘90dx
0 S
i 1 1
IS €00, dX — IS Cz(W,, +2W W, )§godx+J'S e (:]JS Sedx — J'S 31 (z—z YW, +2W oW, 2)O,0X
0
L
:j C;1E,06,0X — Issqlzw L0, 0X — _[S cu—w w 25“;"0dx+.[3 € (ﬁs Oe,dx —
0 S
*2 e*z *2 e*Z
IS S IS 7w, W, 258,0X, +.[S =zw 5godx+IS =7, W, 2SE,0X
s €3 €3 €3 2 e
L L L z L (0
=N’ = .[Sscflgoégodx—jsscflzwyxxégodx—jsscflEwyxxwyxzdgodmsze;‘lh—S(Sgodx
*2 * 2 e*z e*z
—IS sz .[S S 2w wzﬁgodxégo+js Szow 6godx+j8 A 7W W, 2Se,dX
Ca 2ey €5 2ey
By introducing the law of equation (21):
G G
f S,C;6,08,dX — ISAcllzw Se,0x — jSACu W W 250X — J SAeM("%;i%)&odx
A
*2 *2 2 5
J.S —zw goégodx+js zz w 6godx+IS 63; ?w W, “Og,dx (29)
+JS 31 2 W, £,08,0X — IS 31 ZZ\W , £406,0X — IS & 22,W,, W, 5e,dx
2e,
L e p(/’s Gp Ps 2
J 2831 5godx f Saen h, OgqdX + I S AC11E00€,dX — ISAqlexxégodx _[SACM —W W, “Og,dx
0
e *Z ZZ
—J.SA s goégodx+.|.5 27w 650dx+IS ——w W2 Sg,0X
o €x € 2
L *
+J~SA eaj zwaxsoé‘godx—jSAe%lzzAw E0E,0X — IS e/ 22, W, W, Se,dx
o S o Sa 2ey
L L
£ = [0,80,dx = [ S Ecd,dx (30)
0 0
s A c
N, =N+ N+ N,
*2
N, =N +NA+NS = js C11E,08,0X — Issqlzw 5sodx+js —godsodx JS - =W, O5,dx
3 33
(31)

* 2
+I S ,C;1E,06,0X — _[ SACHZW , O dX — _[ S, e3—ij50550dx + I S, e3—ijzsc350dx —'[SA e3—deé0550dx
€q3 €q3 €33
* 2
+IS G, —z W 530dx+j8 =—7,W, 05,0x - _[S = 550dx+.[8 E. 5¢,0dx

3 3

Hs E 5godx+js c115godx+js 31 (1-G )5godx}go Us & (1-G,)z 5godx}
0

33 S
j & G o (€ =W o) B,
(ES)pe = Ss g’ BN :(Es)pe(l_Gp)Zs’ (ES)* = ECSC +2C;185 +(Es)pe(1_Gp) (32)
e

33
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N = (ES)*SO - BNWxx _(Es)peGd (ux +\N,X\N,x _\N,xxzs)

Determination of the moment M

The moment will be determined in the viscoelastic core and the two layers

|&

o =- [ AEcE1o(w,, +;w w,2)dV = Z[Ec£]6w, dxdydz
V

O'—n—
ot—
,\,‘g'—-m

"o
_E” I Z[E.£]ow W, 2dxdydz

00 he

2

|&
5

(&, — ZW,, ) OW W, *dzdx

Il
|
ot— oy
o
m
o
|

L
2(gy — W, )ow  dzdx — % _[ bE,
0

ol

e e e
L 2 L 2 L 2
:—J'bEC _[ Zgoawyxxdzdx+'|'bEC j zzwyxxﬁwvxxdzdx—lbec I 2£,6W , W, *dzdx
o R 0 he 27
2 2 2
he
1f - 7
+fjbEC J z’w 6w, w dzdx
29 %
2
L 2 L 2t
= MC = _J‘bECgO [7] 2hc 5Wxxdx +J.bEC‘gO[7] zhc \N,xxgw,xxdx
o 273 == (33)
——J.bE[ ]hcéwxxwxzdx+ jbE [— Wi oW, W Fdx
h h
—jbE so—w oW, dX += '[bE —w W, W dX
bR i
¢ 12 MC :J-ECICWxx6Wxde+EJ‘bECICWxx§WxxWx2dX (34)
0 0
< Moment in the upper layer M®
M, =~ 20750, I, YAV, == [ 200, —ey B )W, + 2w w, )V, =
oo % S (35)

Izcllgéw dvg +Ize31E W, dVg ——chngw w,2dVg += Ize31E55W w,2dVg

S

Let'sask p=—[zc, zow,,dv, B= +IzeglE55W dv, C_—fj'zcugdw W 2dV, D=+ = Jzezl ESow,,w, dV,

VS S

M;=A+B+C+D= —_[ Cy €,SZsOW, dX + .[cn* IsW oW dX + I 25°SsCy W, W dx

L L
_.[80 S 0w dx+_|‘z2 & 5W dx— Ie lsoW, dx — _[ZS & W, oW, dX
o 2 €3 %

(36)
h .b 2 N 2 3 2 2
_J‘gocll Z hs (hc + hs)vv,xx 5W,xxw,x dX+J. Cll E(hs +th hs +§hchs )Wxx 5\N,xx\N,x dx

0
L

+.[ Zscll* g hs (hc + hs)W,xx é‘\N,xxW j_go b hs (hc + hs)é‘w,xxvv,xzdx

0

1

hfhs +ghch§)5wvxxwlxzdx

e33
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s = (he +hy)/2 therefore S¢ =bh
A 1 2 * * A 1 2
p==[ 2020w, + S w,w YAV, =~ [ 2(cie €L ENS(W, + S w ,w,2)dV,
co2 coz (37)

Va Va

* * 1 * 1 *
= —I 2¢;, & SW, dV, + j zey,Eow, dV, - j 2¢;,e6W W, 2dV, + 5 _[ ze;, Efow W 2dV,
VA VA

L L L
' ! ' ' * * 2 *
M,=A+B+C +D = —'[cng(JSAzA5WYXde+J'cll W, oW dx +J'zA SACHW , oW, dX
0

L

+I s G,£,2,Ss6W,,, dx j G 0ZsZ,SsOW dx+.[ I sW, OW , dX
E

33 0 33

et ?

—j 2 7,2,SsW ., 6W dx+.|' - Gdgosz SsoW , dx—— jcllgob( h (

))W,)(Xé‘W,XXW,XZdX

+— J. Cfl ‘90b(hs3 + % hCZhS + E hszhc )W,xx5w,xxvv,x2dx + _ICII gob(_hA (u))Wxxé‘WxxW,xzdx
* 2

L *2
ILG EZySsOW W, 2 J'LG Z,ZsSsOW W 2dX + = jil W, OW W “dX

33

L *2
——J' 312 Z,SsW,, oW, W 2dx + = J'iGdgosz SgW , SW W, “dX

:>M=M +M+M,
he 2
W LOW  dX +—= jbE _ZW LOW, W “dX— _[%%S Z;0W dx+Iclll W, 0w dx

L e*2 L e*2 L *2
2 81 2 ¥31
SsCiy W, OW, dX — I * SSZS5WXXdX+IZS —*5wyxxdx—_|' ——lsow,, dx
o Ss3 o s 0 Sx

*2

L
= [ bE¢

0

L

+z

0

JI: 31W5W LdX— Igollbh(h+h)W 5WWdX
.

+ o

0

1

(h3 t2 3 hZh, + g h.h2)w,, sw, w dx + I z.C,," % h, (h, + h))w,, sw, w “dx

33

L
—4j g, bh,(h, +h)sw w 2dx+= jSl b (h + hh +3hh)5w w 2dx
0

jcllgos Z,0W dx+jclll W, OW dx+J'z 28 ,,CiW , W dX

2

+J31650285wdx.[3162285wdx+j W ow, dx

0 a3 €33

_J‘es_*lZAZASS\N,xxé‘W,xde+J‘ea_*lGd¢szASSé‘\N,xde J.Cll b( h ( S))W 5W W dX
S

0 Sa3 0 Ss3
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+= Icllgob(h +3h2h +2h2h W Sw, w 2dx + = Jcllgob( h( S))w sw, w dx
L *2 1Le*2
+= J'LG E4ZpSsOW , W 2dX — = IiG Z,255s0W W 2dx+2j 2Ll W, oW W, dX
0 Sa3
L *2
——I =L7,2,85W,, OW W “dX + = fiGdgosz SgW ., W W, “dX
33 33

By integrating considerationsz, =—z . hy =h, S, =S,

DS 31 1+G )dx}g —J.iG U, +W, W, —ZgW, )z Sgow , dx

33

* % e
J{I E. Icéw,xxdxnt2011I&.,.|.5V\/,Xxdx+2cnsszs2 +€3—j(2|S +(G, +1)Z§SS) w
0 0 33

e;?

(ES)pe:;—i
=(ES)pe(1+Gp)zs
ES
(EN), =Ecle +2c;, (1 +ssz§)+( Ss)pe (215 +(G, +1)zis;)

XX

we obten M =-B,, &, —(ES) G, (U,X+W,XW,X - zsv'vyxszS +(El'), w

L L L L L

f N og,dx +J' Mow ,dx =I F, oudx +f F,oudx — pSI (Gou + wow)dx
0 0 0 0 0
H=T-U+Wf,,

15 1% 1%
T==(Vidm==| p(U? +W?)dV == | (S). (0% +W?)dx
2! le( ) 2!(13 ).( )

tjardt :%ﬁ(pS)j(uz +WR)dx :—ﬁ(psm[uau + Wow]dx
t, 0 t, 0

o, &

Ey = 5qu + WYX5W’X

L
N de,dx :J'(NéuyX +Nw,ow  )dx
0

L
N&u dx =[Nsu]; —j N Sudx
0

Ot O Ot

L L
NSw,sw ,dx =[Nw,Sw]; —.[[N‘waX +Nw, Jowdx =[Nw,5w]; —J‘(NWYX)_Xé'WdX
0 0

N :%(ES)*WXZ—BNWXX—(ES) Gy (W, W, —W, 7,)

M :_%BMW,XZ+(EI)*\N,><><_(Es)peGdZs(W,xW,x Wxx s)
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t1
N(t) = J'E(ES)*WIXZ —ByW,, — (ES) ,, Gy (W, Vir, — W, 2, )X
0
L1 L L (46)
= fE(ES)*wXde —_[ By W, dX — (ES)peJ'Gd (W M — Vi, z,)dX
0 0 0
1 ‘ B, [ (ES)p | -
:Z(ES)*_([W,xde_TN_([W,xde_TpGd_([Gd (W, W, — W,z )dx
M, —N@w,, =F,—(oS)w
_BM \N,xx2 - BM VV,xW,xxx + (EI )W,xxxx - (ES) pe Gd Zs (\N,xxx W,x+ W,xxvv,xx + \N,xxw,xx + W,xvv,xxx _W,xxxxzs)
-N{t)w,, =F, —(pS)w
(pS)W—"_(EI)*VV,xxxx_BM (\N,xx2+\N,x\N,xxx)_N(t)Wxx (47)
_(ES)peGd Z (Wxxxvv,x +\N,xx\N,xx +\N,xxvv,xx +\N,X\N,xxx _\N,xxxxzs) = Fz
2 2 3 2 2
G(t) +2uG(t) + oq(t) + ,0° (1) + 2:0° (1) + 2, ()4 () + a,9° (1) (t) = D F, cos(wt + )
= (48)

2.5 MULTI-SCALE METHOD.

We will study the effects of gain parameters on frequency, phase, time response and instability. To this end, an approximate solution
of equation (5) will be presented at different time scales using the multi-scale method. An analysis of the primary and secondary
resonance will be carried out in the case of an elastic piezoelectric sandwich beam subjected to two excitation frequencies

Primary resonance where F = F, andy ,= 7,

. 2 v | 206() +a,q° (D) + a0’ (1) + e, a(t)a(t) +
GO -oq®)=-s * ,
Q" ()A(t) + F; cos(wt +¢,) + F, cos(w,t +¢,) (49)

This equation has a general first-order solution in the form: of time is defined as follows:

T =e"t=e%t+et+&t+.n. =T +T,+T, +ue, (50)
T, =&% T, =&t

Wwith: N & N Note that is a small dimensionless parameter. The first approximation to the solution of the equation is sought in the

form of an expansion in powers of & :

q(t,e)zgoqo(To,Tlv ..... )+81q1(|-0,T1' ..... )+.92q1(T0,T1' ..... | S

For fast timescales'l'0 =1, and for slow timescales, T1 = ¢&t, will be introduced and the derivative operations can be written as follows:
The time derivatives are written as :

(51)

d g°ﬁ+5lg+52t+ ...........

dr T, T (52)
d? 0
T & Dy +2sDyD, +.........
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d
—=&°D, +&'D, +£°D, + ..

dT (53)
d 2
> =¢£°D, +26'DyD, +£°(2D,D, + DY) + ...
D3, + g, =0 (54.1)
Do, + wlqu —2D,D,0, —21Dyq, — aquz - aaqlz
—a,0,D,0, + a0, D,q, + F, cos(ayt —¢,) + F, cos(e,t —,) =0 (54.2)
DZq, + @ld, = —(2ie (A + uA)) + (3Ac, AA + 2iAc, @ AR)e' ™ (55)
+Ha, +iw o) A% + (o, +icya, ) Ae¥ " + (20, + ia),a4)Az\ + % g 4+ %ei‘%
L
ar T, T, (56)
T & D, +26D,D, +.........
DZg, + @0, = —(2ieo (A + uA)) + (3Ac, AA + 2iAc 0y AA)e™™ 57)
+a, + im0 ) A% + (o, + iy, ) Ae¥™ + (201, +icyor,) AA + % gl 4 %ei“’zT“
0 1 2
at,e) =& qo(Ty, T, o) +& G (To, Ty o)+ 70 (T, Ty i)+
3 RESULTS AND DISCUSSION
Z Physical properties Skins PZT materials
Sensor/actuator
Length (m) L,=0.18 I,=L =03
width (m) B, =0.025 B, =B =0.05
Thickness (m) hy =07 h, =h, =0.008
Volumic mass (Kg/m®) P, =9246 P, =9200
p.=2730
Young's modulus (Gpa) E, =3059 EP =65,9
E =4222
Constant Deformation d, =153 10712
(m/V)
stress constant (m/V) g, =117x 107

Fig 1: bimorph piezelastic/elastic/piezoelectric beam  Tab 1. "Physical Properties
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Gp=34,F 1=150,F2=250,F 3=450,, =1.4924&3,rx3=-1.T?BDET,a5=-3.552I]eT
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Fig 2: Non-linear frequency-amplitude response for Gd (0.005 ;0.008 ;0.01 ; 30) Gp = 34

Gd=0.005,F1=150,F2=250,F3=450, =1 .4924¢°,

a,=1.7760¢’,cr =-3.5520e’
0.018 T T T T T T T T T
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Fig 3: Non-linear frequency-amplitude response for Gp (28 ;32 ;34) Gd = 0.005
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Gd=0.005,F1 =150,F2=250,F3=45I],n:1 =1.492493,

103 o, =1.7760e’,cx,=-3.5520¢’
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Fig 5: Nonlinear frequency response for Gp (-0,5;-0,2 ;0;0,2,0,5,0,8) Gd =30

We can see from these curves that the gain parameters Gd have a considerable influence on the vibration amplitudes. Indeed, for
negative values of gain Gd, Gd (-0.5 ; -0.2), the curves obtained are oriented towards high frequencies, which reflects the stiffening
nature of the beam. On the other hand, for positive values of Gd (0.2; 0.5; 0.8), the curves are oriented towards low frequencies with

relatively large amplitudes, reflecting the beam's softening behaviour. On the other hand, for positive values of Gd (0.2; 0.5; 0.8), the
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curves are oriented towards low frequencies with relatively large amplitudes, which reflects the softening behaviour of the beam.
For the zero value of Gd (0), the curve obtained describes a more linear behaviour, with the amplitude of vibration increasing rapidly,
then decreasing just as quickly and stabilising, which would explain why the plate no longer vibrates. We can see that the angles be-
tween the different forces applied to the beam play an important role in the behaviour of the structure. Indeed, when the difference
in angle is zero, the curves obtained are practically grouped together and, depending on the values of Gd, the beam may stiffen or
soften. Figure 4 shows the frequency-amplitude behaviour of the beam as a function of the parameter Gv and the angles between
the different forces. It can be seen that the amplitude decreases with Gv. The curves have the same orientation and are symmetrical
about the same axis. Our results can be explained by the fact that the greater the gain parameter Gy, the more the vibration ampli-
tude decreases. On the other hand, for small values of Gv, the amplitude is large. The curve shows the amplitude-frequency curves of
the non-linear vibrations of a beam on which a direct proportional control has been carried out with Gd as the control parameter. It
can be seen that the amplitude of the vibration decreases as the values of Gd become larger, and also that the amplitude of the vi-
brations decreases with the points where the forces are applied; in fact, the further these points are from the origin of the reference
frame, the greater the amplitude of the vibration.The same amplitudes can be observed whatever the gain parameter Gd. This could
lead us to say that the points of application of the forces play a predominant role in the frequency responses. We can also see that
the curves are oriented towards high frequencies, depending on the values of Gd , where the beam acquires a stiffening or resisting
character. In this case, the beam vibrates more for longer, which makes it less stable. The curves illustrate the non-linear behaviour of
the sandwich beam under the influence of the velocity gain Gv, we can see that the curves have the same orientation and are sym-
metrical about the same axis. The amplitudes evolve in the opposite direction to the parameter Gy, i.e. the amplitudes decrease with

the values of Gv.
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