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Abstract 

Antibiotic resistance poses a significant threat to global health, necessitating innovative strategies 

to combat bacterial infections. This study develops a mathematical model using stochastic 

differential equations to investigate the antibacterial activity of MoS2 nanotubes against 

Escherichia coli populations, accounting for bacterial growth, death, and interaction with MoS2 

nanotubes, as well as intrinsic biological noise. The model is solved numerically using NumPy 

and SciPy libraries in Python, revealing the impact of varying parameters on the system dynamics. 

Simulation results demonstrate that increasing MoS2 concentration and controlling bacterial 

growth rates can effectively suppress E. coli populations, providing valuable insights into 

optimizing antibacterial interventions. The results are presented in time series plots, phase plane 

plots, and tables, showcasing the potential of mathematical modeling and simulation in developing 

robust strategies to combat antibiotic resistance. 
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INTRODUCTION 
Antimicrobial resistance (AMR) poses a significant global health threat, rendering many 

antibiotics ineffective against common bacterial infections, including those caused by Escherichia 

coli (E. coli) (WHO n.d). The overuse and misuse of antibiotics have led to the emergence of 

multidrug-resistant bacteria, resulting in increased mortality and healthcare costs (CDC ). E. coli 

is a particularly concerning pathogen due to its prevalence in various infections, including urinary 

tract infections, foodborne illnesses, and sepsis (Crooke et al., 2018). The emergence of multidrug-

resistant (MDR) E. coli strains necessitates the development of novel, broad-spectrum antibacterial 

agents (McDougal & Wright, 2019). The urgent need for alternative antibacterial agents has 

sparked research into novel materials with unique properties, such as transition metal 

dichalcogenides (TMDs) like Molybdenum disulfide [MoS2] (MX2). 

 

Transition metal dichalcogenides (TMDs), particularly molybdenum disulfide (MoS2), have 

emerged as promising candidates for novel antibacterial agents due to their unique properties. 

These materials possess high surface area, conductivity, and mechanical strength, contributing to 

their effectiveness (Mondal & De, 2022). Their antibacterial activity stems from two primary 

mechanisms: generation of reactive oxygen species (ROS) that induce oxidative stress, and sharp 

nanotube edges that disrupt bacterial cell membranes (Mondal & De, 2022, Zhao et al., 2021). 

Recent research has extensively explored the antibacterial potential of MoS2 and other TMDs. 

Studies by Zhao et al. (2021) demonstrated the bactericidal capabilities of MoS2 nanosheets 

against E. coli, attributing their efficacy to oxidative stress and membrane damage. Similarly, a 

review by Shen et al. (2024) highlighted MoS2's promising antibacterial properties and 

mechanisms, suggesting further exploration for various biomedical applications. 

 

Beyond MoS2, Pandit et al. (2016) investigated the antibacterial properties of functionalized two-

dimensional chemically exfoliated MoS (ce-MoS) against ESKAPE pathogens, including 

Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Their findings suggest that ce-MoS 

exhibits inhibitory and bactericidal properties against these pathogens, with a mechanism 

involving oxidative stress and rapid membrane depolarization. This study exemplifies the potential 

of 2D TMDs as a new class of antibiotics to combat antibiotic resistance. 

 

The bactericidal mechanisms of TMDs extend beyond ROS generation and membrane disruption. 

Kim et al. (2019) explored the role of electrical conductivity and chemical oxidation in 1T-phase 

TMDs. Their research showed that MoS2's properties facilitate charge transfer from the bacterial 

membrane to the TMDs, leading to continuous bacterial disruption and loss of cellular 

components. 

Despite the progress made through empirical and experimental research, these methods have 

limitations. They often rely on specific laboratory conditions that may not fully capture the 

complex interactions between TMDs and bacterial cells in real-world environments with diverse 

factors (Hu et al., 2018). 
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Theoretical modeling offers a more robust framework for predicting and understanding the 

antibacterial activity of TMDs. Stochastic differential equations (SDEs) present a powerful tool in 

this regard. SDEs can account for the inherent randomness in biological systems, such as 

fluctuations in bacterial growth and mutation rates (Allen, 2017). By developing a mathematical 

model using SDEs, we can simulate the dynamics of the system and predict the effectiveness of 

MoS2 nanotubes under various conditions. This includes factors like varying concentrations, 

exposure times, and bacterial strain characteristics. Additionally, SDE models can help elucidate 

the underlying mechanisms of MoS2 nanotube action, leading to the identification of key factors 

influencing their effectiveness, such as surface area, functionalization, and interaction with 

bacterial membranes. 

 

Previous research has demonstrated the potential of SDE modeling in the context of antibacterial 

activity. For instance, Akiyama and Kim (2021) investigated the stochastic response of bacterial 

cells to antibiotics and its implications for population and evolutionary dynamics. The study 

revealed insights into how these stochastic responses impact the population dynamics of bacteria 

and their evolutionary trajectories in the presence of antibiotics. Another study by Mansour (2023) 

developed a stochastic model based on deterministic equations to analyze the dynamics of bacterial 

populations under the influence of random fluctuations. The model demonstrated the stochastic 

effect of eradicating bacteria with antibiotics and provided insights into treatment outcomes. By 

building upon this existing work and applying SDEs to MoS2 nanotubes specifically, we can gain 

deeper insights and optimize their design for broad-spectrum antibacterial applications. 

 

This study breaks new ground by employing stochastic differential equations (SDEs) to model the 

antibacterial activity of MoS2 nanotubes against E. coli. Unlike traditional methods, SDEs account 

for the inherent randomness in biological systems. This allows for a more nuanced understanding 

of MoS2 nanotube effectiveness by considering factors like bacterial population fluctuations and 

mutation rates. This novel approach can significantly enhance our ability to predict and optimize 

MoS2 nanotube design for broad-spectrum antibacterial applications. 

 

The core of this study lies in developing a mathematical model using SDEs. These equations will 

incorporate variables like E. coli population state and MoS2 nanotube concentration. Deterministic 

terms will capture factors like bacterial growth and MoS2-mediated disruption. Stochastic terms 

will account for the inherent randomness in biological processes. By simulating these SDEs, we 

can predict the antibacterial activity of MoS2 nanotubes under diverse conditions. This analysis 

will allow us to identify key factors influencing their effectiveness and guide the design of next-

generation antibacterial solutions. 
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METHODS 

2.1. Overview Theoretical Concept 

The interaction between MoS2 nanotubes and E. coli bacteria is a complex process influenced by 

various biological and physical factors (Yang et al., 2014). To understand and predict the 

antibacterial activity of MoS2, we employ a mathematical model that captures both the 

deterministic and stochastic nature of this interaction. 

 

Deterministic Dynamics: Logistic Growth and Antibacterial Action 

The logistic growth equation, a well-established mathematical representation of population 

dynamics (Verhulst, 1838), describes how the E.coli population, denoted by 𝑋𝐸(𝑡), grows in a 

controlled environment with limited resources. The growth rate (𝑟𝐸) and the carrying capacity (𝐾𝐸) 

are the key parameters, where the former dictates the speed of growth and the latter represents the 

maximum population size the environment can sustain (Murray, 2002). However, when MoS2 

nanotubes, represented by 𝑀𝑀(𝑡), are introduced into the environment, they exert an antibacterial 

effect on the E. coli population, modeled by a term involving the rate constant (𝛼𝐸𝑀E) (Naskar et 

al., 2021). 

 

Stochastic Dynamics: Accounting for Randomness 

Biological systems are inherently random (Kampen and Reinhardt, 1983). This randomness arises 

from numerous sources, such as fluctuations in environmental conditions or random interactions 

at the molecular level. To incorporate this aspect into our model, we introduce a stochastic term 

characterized by the intensity (𝜎𝑋𝐸) and a white noise process (𝜉𝑋𝐸(𝑡)) (Gardiner, 2009). 

 

 

Coupled Dynamics: Interplay Between E. coli and MoS2 

The coupled dynamics of E. coli and MoS2 are described by two linked differential equations 

(Keller et al., 2019). The first captures the changing E. coli population over time, considering both 

growth and antibacterial disruption (Braumann 2008). The second equation models the decay of 

MoS2 concentration, reflecting processes like aggregation or chemical reactions that reduce the 

availability of active nanotubes over time (Patel et al., 2021). 

 

Master Equation: Probability Distribution 

To fully understand the system's behavior, we derive the master equation, known as the Fokker-

Planck equation in the context of stochastic processes (Risken, 1996). This equation governs the 

evolution of the probability distribution of the system's states, providing a comprehensive picture 

of the possible outcomes of the interaction between E. coli and MoS2 (Lamperti, 1977) 

 

2.2. Development of the Mathematical Model 

In this section we develop a mathematical model for the membrane disruption of E. coli 

induce by the concentration of MoS2 and environmental fluctuation at the point of 

interaction. 
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The Stochastic Differential Equation Model 

We introduced the stochastic Differential Equations thus; 

The logistic growth term for the E. coli population, denoted by 𝑋𝐸(𝑡) , is given by: 

𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ𝐸 =  
𝑑𝑋𝐸

𝑑𝑡
= 𝑟𝐸 ⋅ 𝑋𝐸 ⋅ (1 −

𝑋𝐸

𝐾𝐸
)                                                                       (1) 

 

𝑟𝐸 is the intrinsic growth rate of E. coli, 𝑋𝐸(𝑡) is the concentration of E. coli at time (𝑡) and 𝐾𝐸  is the 

carrying capacity of the environment for E. coli. 

The MoS2-mediated disruption term, which models the antibacterial effect of MoS2 nanotubes 

on E. coli, is given by: 

 

Disruption
𝐸𝑀

=
𝑑𝑋𝐸𝑀

𝑑𝑡
= −𝛼𝐸𝑀 ⋅ 𝑋𝐸(𝑡) ⋅ 𝑀𝑀(𝑡)                                                                                 (2) 

 

𝛼𝐸𝑀 is the rate constant for the interaction between E. coli and MoS2 and 𝑀𝑀(𝑡) is the 

concentration of MoS2 nanotubes at time (𝑡). 

The SDE that describes the change in the bacterial population 𝑑𝑋𝐸   over a small-time interval (dt), 

influenced by the noise intensity 𝜎𝑋𝐸
 population size 𝑋𝐸(𝑡) and random noise process 𝜉𝑋𝐸

(𝑡) is given as: 

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑁𝑜𝑖𝑠𝑒𝐸 =  
𝑑𝑋𝐸

𝑑𝑡
= 𝜎𝑋𝐸

∙ 𝑋𝐸(𝑡) ∙ 𝜉𝑋𝐸
(𝑡)                                                                                 (3) 

Combining (1),(2) and (3), we find the full SDE for the concentration of E. coli in the presence of MoS2 

nanotubes: 

 

𝑑𝑋𝐸(𝑡)

𝑑𝑡
= 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ𝐸 + Disruption

𝐸𝑀
+ 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑁𝑜𝑖𝑠𝑒𝐸 

𝑑𝑋𝐸(𝑡)

𝑑𝑡
= 𝑟𝐸 ⋅ 𝑋𝐸(𝑡) ⋅ (1 −

𝑋𝐸(𝑡)

𝐾𝐸
) − 𝛼𝐸𝑀 ⋅ 𝑋𝐸(𝑡) ⋅ 𝑀𝑀(𝑡) + 𝜎𝑋𝐸

⋅ 𝑋𝐸(𝑡) ⋅ 𝜉𝑋𝐸
(𝑡) 

𝑑𝑋𝐸(𝑡) = [𝑟𝐸 ⋅ 𝑋𝐸(𝑡) ⋅ (1 −
𝑋𝐸(𝑡)

𝐾𝐸
)] 𝑑𝑡 − [𝛼𝐸𝑀 ⋅ 𝑋𝐸(𝑡) ⋅ 𝑀𝑀(𝑡)]𝑑𝑡 + [𝜎𝑋𝐸

⋅ 𝑋𝐸(𝑡) ⋅ 𝜉𝑋𝐸
(𝑡)]𝑑𝑡            (4) 

 

Eqn (4) is of the form 𝒅𝑿(𝒕) = 𝒇(𝑿(𝒕), 𝒕)𝒅𝒕 + 𝒈(𝑿(𝒕), 𝒕)𝒅𝑾(𝒕)𝒅𝒕 where  𝑓(𝑋(𝑡), 𝑡)  represents the 

deterministic part of the dynamics and 𝑔(𝑋(𝑡), 𝑡)  represents the stochastic noise. 

 

Eqn (4) describes the dynamics of the E. coli population under the influence of logistic growth, antibacterial 

disruption by MoS2, and stochastic environmental variations. 

 

Concentration Dynamics of MoS2 Nanotubes 

To model the concentration dynamics of MoS2 nanotubes, we assume a simple decay process with a rate 

proportional to the current concentration. This can be represented mathematically as: 

𝑑𝑀𝑀(𝑡)

𝑑𝑡
= −𝛽𝑀 ⋅ 𝑀𝑀(𝑡)  +  𝜂 ∙ 𝑑𝑊(𝑡)                                                                                                          (5) 

𝛽𝑀 is the decay rate constant of MoS2 nanotubes. 𝜂 ∙ 𝑑𝑊(𝑡)𝑑𝑡 noise term, where η is the noise intensity 

(a constant), and 𝑑𝑊(𝑡) is a Wiener process (a random process with Gaussian increments). This term 

represents the random fluctuations in MoS2 concentration due to external factors. 
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Coupled Dynamics: 

Now, we combine the E. coli growth and disruption dynamics with the MoS2 concentration dynamics. 

The coupled system of differential equations is: 

{
𝑑𝑋𝐸(𝑡) = [𝑟𝐸 ⋅ 𝑋𝐸(𝑡) ⋅ (1 −

𝑋𝐸(𝑡)

𝐾𝐸
)] 𝑑𝑡 − [𝛼𝐸𝑀 ⋅ 𝑋𝐸(𝑡) ⋅ 𝑀𝑀(𝑡)]𝑑𝑡 + [𝜎𝑋𝐸

⋅ 𝑋𝐸(𝑡) ⋅ 𝜉𝑋𝐸
(𝑡)]𝑑𝑡

𝑑𝑀𝑀(𝑡) = −𝛽𝑀 ⋅ 𝑀𝑀(𝑡)𝑑𝑡 + 𝜂 ∙ 𝑑𝑊(𝑡)𝑑𝑡        
}   (6)  

 

 

In this coupled system: 

The Eqn (4) describes the change in E. coli concentration over time, incorporating logistic growth, MoS2-

mediated disruption, and stochastic environmental noise. 

 

The Eqn (5) describes the decay of MoS2 concentration over time. 

Together, these equations model the interaction between E. coli and MoS2 nanotubes, taking into account 

the antibacterial activity of MoS2 and the environmental variability affecting the system. 

 

 

Modelling the Probability Distribution of the System’s State  
To fully capture the stochastic nature of the system and the interactions between the species, we derived a 

Master Equation that describes the probability distribution of the system’s states, offering a more 

comprehensive understanding of the system’s behavior over time. 

 

We define the transition probabilities  𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡 + Δ𝑡 ∣ 𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡) which describe the probability of the 

system transitioning from state (𝑋𝐸
′ , 𝑀𝑀

′ ) at time  (𝑡) to state ( (𝑋𝐸 , 𝑀𝑀) ) at time ( 𝑡 + Δ𝑡 ). 

 

The Chapman-Kolmogorov equation (Tarasov, 2007) relates the transition probabilities at different times: 

𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡 + Δ𝑡) = ∫ ∫ 𝑃( 𝑋𝐸 , 𝑀𝑀, 𝑡 + Δ𝑡 ∣∣ 𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡 )𝑃(𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡)𝑑𝑋𝐸
′ 𝑑𝑀𝑀

′                       (7) 

 

By Taylor Series Expansion  

𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡 + Δ𝑡 ∣ 𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡) = 𝑃(𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡) + (
∂

∂𝑋𝐸
′ 𝑃(𝑋𝐸

′ , 𝑀𝑀
′ , 𝑡))(𝑋𝐸 − 𝑋𝐸

′ ) + (
∂

∂𝑀𝑀
′ 𝑃(𝑋𝐸

′ , 𝑀𝑀
′ , 𝑡))(𝑀𝑀 − 𝑀𝑀

′ ) + ⋯ 

 

integrating this expansion over all possible values of 𝑋𝐸
′ , 𝑀𝑀

′  𝑎𝑛𝑑 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑡ℎ𝑒 2nd term 

∂𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡)

∂𝑡
= −

∂

∂𝑋𝐸

[𝛼(𝑋𝐸 , 𝑀𝑀 , 𝑡)𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡)] +
∂2

∂𝑋𝐸
2 [

1

2
β(𝑋𝐸 , 𝑀𝑀 , 𝑡)𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡)]                      (8) 

Where 𝛼 𝑎𝑛𝑑 𝛽 Kramers-Moyal coefficients are defined as the moments of the transition rates: 

𝛼(𝑋𝐸 , 𝑀𝑀 , 𝑡) =
1

1!
∫(𝑋𝐸 − 𝑋𝐸

′ )𝑛𝑊(𝑋𝐸 ∣ 𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡)𝑑𝑋𝐸
′  

𝛽(𝑋𝐸 , 𝑀𝑀, 𝑡) =
1

2!
∫(𝑋𝐸 − 𝑋𝐸

′ )𝑛𝑊(𝑋𝐸 ∣ 𝑋𝐸
′ , 𝑀𝑀

′ , 𝑡)𝑑𝑋𝐸
′  

 

Here, 𝛼(𝑋𝐸 , 𝑀𝑀, 𝑡) is the drift coefficient, which represents the deterministic part of the process, and 

𝛽(𝑋𝐸 , 𝑀𝑀 , 𝑡) is the diffusion coefficient, which represents the stochastic part. 

 

Eqn (8) describes the time evolution of the probability distribution ( P(𝑋𝐸 , 𝑀𝑀, 𝑡) ) for the system’s states 

and is used to analyze the overall behavior of the system in terms of probabilities. The equation takes into 

GSJ: Volume 12, Issue 6, June 2024 
ISSN 2320-9186 1647

GSJ© 2024 
www.globalscientificjournal.com



account both the deterministic dynamics (growth and decay) and the stochastic fluctuations due to random 

environmental factors. 

 

2.3. Solution of the Derived Models 

1. Solution of the Coupled SDE 

To numerically solve the coupled SDE (Eqn 6) the Euler-Maruyama method is employed: 

𝑋𝑛+1 = 𝑋𝑛 + 𝑓(𝑋𝑛, 𝑡𝑛)Δ𝑡 + 𝑔(𝑋𝑛, 𝑡𝑛)Δ𝜉                     

where 𝑋𝑛 is the population size at the 𝑛 − 𝑡ℎ time step, Δ𝑡  is the time step size, and Δ𝜉𝑛 is the Wiener 

process increment during the 𝑛 − 𝑡ℎ step. 

 

Discretization of  Eqn (6) with the Euler-Maruyama Method 

𝑋𝐸,𝑛+1 = 𝑋𝐸,𝑛 +  [𝑟𝐸 ⋅ 𝑋𝐸,𝑛 (1 −
𝑋𝐸,𝑛

𝐾𝐸
) − 𝛼𝐸 ⋅ 𝑀𝑀,𝑛 ⋅ 𝑋𝐸,𝑛] Δ𝑡 + 𝜎𝑋𝐸

⋅ 𝑋𝐸,𝑛 ⋅ √Δ𝑡 ⋅ 𝑁(0,1) ∙ 𝜉𝐸,𝑛 

𝑋𝐸,𝑛 is the population of E. coli at the n-th time step 𝜉𝐸,𝑛is a random variable from a standard 

normal distribution, 𝜉𝐸,𝑛∼N(0,1) 

 

The MoS2 Nanotube Concentration becomes; 

𝑀𝑀(𝑛+1)(𝑡) = 𝑀𝑀,𝑛 − 𝛽𝑀 ⋅ 𝑀𝑀,𝑛Δ𝑡 + 𝜂 ∙ 𝑑𝑊(𝑡)𝑑𝑡         

The Numerical Solution becomes:  

 

{
𝑋𝐸,𝑛+1 = 𝑋𝐸,𝑛 + [𝑟𝐸 ⋅ 𝑋𝐸,𝑛 (1 −

𝑋𝐸,𝑛

𝐾𝐸
) − 𝛼𝐸 ⋅ 𝑀𝑀,𝑛 ⋅ 𝑋𝐸,𝑛] Δ𝑡 + 𝜎𝑋𝐸

⋅ 𝑋𝐸,𝑛 ⋅ √Δ𝑡 ⋅ 𝑁(0,1) ∙ 𝜉𝐸,𝑛

𝑀𝑀,𝑛+1 = 𝑀𝑀,𝑛 − 𝛽𝑀 ⋅ 𝑀𝑀,𝑛Δ𝑡 + 𝜂 ∙ 𝑑𝑊(𝑡)𝑑𝑡        

} 

 

This solution is set-up with Python Algorithms to simulate the behavior of the system under stochastic 

influences and determine how the antibacterial activity of MoS₂ affects the bacterial population over time. 

 

2. Solution of the Probability Distribution  

The general form of the Fokker-Planck equation, which describes the time evolution of the probability 

density function ( 𝑃(𝑋, 𝑡) ) of a state variable ( 𝑋 ) under the influence of deterministic and stochastic 

processes.  

∂𝑃(𝑋, 𝑡)

∂𝑡
= −

∂

∂𝑋
[𝐴(𝑋, 𝑡)𝑃(𝑋, 𝑡)] +

∂2

∂𝑋2
[𝐵(𝑋, 𝑡)𝑃(𝑋, 𝑡)] 

For our specific model, the equation modifies to Equ (8) 

∂𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡)

∂𝑡
= −

∂

∂𝑋𝐸

[𝛼(𝑋𝐸 , 𝑀𝑀 , 𝑡)𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡)] +
∂2

∂𝑋𝐸
2 [

1

2
β(𝑋𝐸 , 𝑀𝑀, 𝑡)𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡)] 

𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡) 𝑖𝑠 𝑡ℎ𝑒  Probability density function of the state variables 𝑋𝐸  𝑎𝑛𝑑 𝑀𝑀 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝛼(𝑋𝐸 , 𝑀𝑀, 𝑡) is the Drift term, which represents the deterministic part of the dynamics. 

β(𝑋𝐸 , 𝑀𝑀, 𝑡) Diffusion term, which represents the stochastic part of the dynamics. 

 

Expanding the expression: 

∂𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡)

∂𝑡
= −𝛼

∂

∂𝑋𝐸

(𝑋𝐸 , 𝑀𝑀 , 𝑡)
∂

∂𝑋𝐸
𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡) +

𝛽

2

∂2

∂𝑋𝐸
2

(𝑋𝐸 , 𝑀𝑀 , 𝑡)
∂2

∂𝑋𝐸
2 𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡) 
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⇒
∂𝑃(𝑋𝐸 , 𝑀𝑀, 𝑡)

∂𝑡
= −𝛼

∂

∂𝑋𝐸

(𝑋𝐸 , 𝑀𝑀 , 𝑡) +
𝛽

2

∂2

∂𝑋𝐸
2

(𝑋𝐸 , 𝑀𝑀, 𝑡) 

 

By Characteristic method: 

The Drift Term becomes; 

∂𝑃

∂𝑡
= −𝛼

∂

∂𝑋𝐸
 

This is a linear first-order PDE, which can be solved by the method of characteristics. The characteristic 

equations are: 

∂𝑋𝐸

∂𝑡
= 𝛼        𝑎𝑛𝑑          

∂𝑃

∂𝑡
= 0 

Solving these gives: 

𝑋𝐸(𝑡) = 𝑋𝐸(0) − 𝛼𝑡 

 

Thus, the solution for P is:  

𝑃(𝑋𝐸, 𝑀𝑀, 𝑡) = 𝑃0(𝑋𝐸(0) − 𝛼𝑡, 𝑀𝑀)                                                                                     (9) 

 

The Diffusion Term: 

∂𝑃

∂𝑡
=

𝛽

2

∂2𝑃

∂𝑋𝐸
2 

This is a standard heat equation with a diffusion coefficient 
𝛽

2
. The general solution is a Gaussian 

distribution: 

𝑃(𝑋𝐸 , 𝑡) =
1

√2𝜋𝛽𝑡
exp (−

(𝑋𝐸 − 𝜇)2

2𝛽𝑡
)                                                                                                  (10) 

Combining Eqn. (9) and (10) 

𝑃(𝑋𝐸 , 𝑀𝑀 , 𝑡) = ∫
1

√2𝜋𝛽𝑡
exp (−

(𝑋𝐸 − 𝜉 − 𝛼𝑡)2

2𝛽𝑡
) 𝑃0(𝜉, 𝑀𝑀) 𝑑𝜉

∞

−∞

                                   (11) 

 

Solving (11) Numerically: 

To solve the Fokker-Planck equation numerically using the Finite Difference Method (FDM), we discretize 

the time and space into a grid and then approximate the derivatives in the equation with finite differences 

∂𝑃

∂𝑋
≈

𝑃[𝑗 + 1][𝑖] − 𝑃[𝑗 − 1][𝑖]

2Δ𝑋
 

 

∂2𝑃

∂𝑋2
≈

𝑃[𝑗 + 1][𝑖] − 2𝑃[𝑗][𝑖] + 𝑃[𝑗 − 1][𝑖]

Δ𝑋2
 

The solution is simulated in Python. The Algorithm is attached.  

 

RESULTS 

The results of the stochastic differential equation modeling are presented below, featuring time 

series plots, phase plane plots, and tables that highlight the key findings and trends in the data. 
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The phase plane plot (figure 1) of our model reveals a dynamic interaction between the E. coli 

population and MoS2 concentration. The trajectories indicate that the system does not settle into a 

steady state but rather exhibits fluctuations that suggest a sensitive dependence on initial conditions 

and parameters.  

 
Figure 1: Phase Plane plot of the MoS2 – E.Coli Interaction 

 

This stochastic behavior highlights the complexity of biological systems where even a small 

change in the environment can lead to significantly different outcomes. 

 

Figure 2 shows four line graphs, each representing a sample path with different values of beta (β) 

and eta (η), which are parameters in the stochastic differential equations modeling the antibacterial 

activity. The x-axis on all graphs represents time (hours), ranging from 0 to 10, while the y-axis 

represents bacterial population size for E. coli and MoS2 concentration, both measured in arbitrary 

units. 

 

In each graph, there are two lines: one for E. coli population size and another for MoS2 

concentration. The first graph has 𝛽 = 0.3 𝑎𝑛𝑑 𝜂 = 0.4, the second has 𝛽 = 0.6 and 𝜂 = 0.4, the 

third has 𝛽 = 0.3 and 𝜂 = 0.8, and the fourth has 𝛽 = 0.6 and 𝜂 = 0.8. 
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Figure 2: Dynamic Interplay of E. coli Population and MoS2 Concentration 

 

The results from these plots indicate that as the value of beta (β) increases from 0.3 to 0.6 while 

keeping eta (η) constant at 0.4, there is a more pronounced fluctuation in both E.coli population 

size and MoS2 concentration over time with higher peaks observed in bacterial reduction followed 

by recovery phases. 

Figure 2 shows that an increase in η leads to a more significant decrease in E.coli population size 

along with higher MoS2 concentrations over time. 

 

Figure 3 is a plot of the growth of E. coli population over time, measured in hours, with three 

different growth rates indicated by three distinct lines. The x-axis represents time in hours, ranging 

from 0 to 10, and the y-axis represents the E. coli population, ranging from 0 to 70. There are three 

lines representing different values of the parameter r (growth rate): 𝑟 = 0.1 (red line), 𝑟 = 0.2 

(orange line), and 𝑟 = 0.3 (green line). As time progresses, each line shows an increase in E. coli 

population with varying slopes indicating that a higher growth rate results in a steeper slope and 

thus a faster-growing population. 

GSJ: Volume 12, Issue 6, June 2024 
ISSN 2320-9186 1651

GSJ© 2024 
www.globalscientificjournal.com



 
Figure 3: Impact of Growth Rate on E. coli Population Dynamics in MoS2 Nanotubes 

 

The analysis of Figure 3 reveals that the growth rate parameter ‘𝑟’ significantly influences the 

proliferation of Escherichia coli within MoS2 nanotubes over time. For a lower growth rate value 

of 𝑟 = 0.1, the increase in bacterial population is gradual and linear, reaching approximately 20 

units after 10 hours. When the growth rate parameter is doubled to 𝑟 = 0.2, there is a notable 

acceleration in bacterial expansion with the final count nearing 40 units at the same time point—a 

twofold increase compared to 𝑟 = 0.1 scenario. 

 

Figure 4 shows the Stochastic Simulations of E. coli Population over time. There are three lines 

represents the different realizations or simulations of E. coli population growth over time: 

Realization 1 (blue), Realization 2 (green), and Realization 3 (orange). Each line fluctuates, 

showing variability in the population size at different time points, which is characteristic of 

stochastic models. 
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Figure 4: Impact of MoS2 Nanotubes on E. coli Population Dynamics 

 

This plot revels that the SDE used to model the antibacterial activity of MoS2 nanotubes against 

Escherichia coli populations demonstrate significant fluctuations in bacterial counts over a period 

of ten hours. Three separate simulations, termed as ‘Realizations’, exhibit distinct trajectories, 

indicating the inherent randomness in biological interactions modeled by such equations. Despite 

this variability, all three realizations show an overall trend of increasing E. coli population size 

over time. 

 

Table 1 presents the data generated from the numerical solution to the stochastic differential 

equations modeling the antibacterial activity of MoS2 nanotubes against E. coli. The table is 

structured to provide a detailed view of the system’s state at various time points, with the position 

values representing the concentration of E. coli and the probability values indicating the likelihood 

of observing the system in that state. 

S/n Time Position Probability 

1 0.0 -2.0000 0.05400 

2 0.0 -1.8974 0.0659 

3 0.0 -1.7949 0.0797 

4 0.0 -1.6923 0.0953 

5 0.0 -1.5897 0.1128 

6 0.0 -1.4872 0.1320 

7 0.0 -1.3846 0.1530 
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8 0.0 -1.2821 0.1754 

9 0.0 -1.1795 0.1990 

10 0.0 -1.0769 0.2234 

195 0.95 -0.9744 0.0000 

196 0.95 -0.6667 0.0000 

197 0.95 -0.4615 0.0001 

198 0.95 -0.1538 0.0001 

199 0.95 0.0512 0.0002 

395 0.95 1.0769 0.0031 

396 0.95 1.2820 0.0050 

397 0.95 1.5897 0.0094 

398 0.95 1.7948 0.0135 

399 0.95 2.00 0.0176 

Tabe 1 - Temporal Distribution of E. coli Concentration Probabilities in the Presence of MoS2 

Nanotubes 

 

The data is organized into intervals that reflect the concentration ranges of E. coli, with five values 

between -2 and -1, five between -1 and 0, another five between 0 and 1, and the last five between 

1 and 2. These intervals are chosen to capture the significant changes in the bacterial population 

due to the interaction with MoS2 nanotubes. The ‘Time’ column corresponds to discrete time steps 

in the simulation, while the ‘Position’ column represents the discretized state space of E. 

coli concentration, and the ‘Probability’ column provides the computed probability density for 

each state. 

 
Figure 5 - Dynamic Evolution of E. coli Probability Density Under MoS2 Nanotube Influence 

 

Figure 5 illustrates the dynamic evolution of the probability density function (PDF) for the 

concentration of E. coli when exposed to MoS2 nanotubes, as predicted by stochastic differential 

equations. Each curve represents the PDF at a specific time interval, starting 𝑓𝑟𝑜𝑚 𝑡 = 0.00 
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(initial state) and ending at 𝑡 = 0.90. Initially, the PDF is narrowly peaked, indicating a high 

probability of E. coli concentration around a particular value. As time progresses, the curves 

become broader and flatter, reflecting the diffusion of the bacterial population and the impact of 

the antibacterial activity of MoS2 nanotubes. This spread signifies a decrease in the likelihood of 

finding E. coli at high concentrations, suggesting that MoS2 nanotubes are effective in dispersing 

and reducing the bacterial population, thereby offering a potential method to combat antibiotic 

resistance. Figure 1 provides a visual representation of the antibacterial efficacy over time, 

supporting the use of MoS2 TMDs as a novel antibacterial agent. 

 

CONCLUSION 

The mathematical model developed in this study using stochastic differential equations has 

provided valuable insights into the antibacterial activity of MoS2 nanotubes against Escherichia 

coli populations. The results demonstrate that varying levels of efficacy (β) and volatility (η) of 

MoS2 significantly impact the antibacterial activity, with higher values of volatility leading to 

more effective suppression of E. coli populations. Additionally, the model reveals that controlling 

the growth rate parameter (r) is crucial for optimizing antibacterial activity. This novel approach 

highlights the potential of MoS2 TMDs as effective antibacterial materials and emphasizes their 

controllable aspects via mathematical parameters. The approach also provides insights into 

optimizing dosages of TMDs nanotubes for combating antibiotic-resistant bacteria through precise 

mathematical models.  The variability observed in the phase plane plots underscores the need for 

a probabilistic approach to understanding and predicting the outcomes of antibacterial 

interventions. Future work should focus on refining these models to account for more biological 

factors and experimental validation of the predicted behaviors. This research paves the way for 

developing more effective antibacterial strategies that are robust to the inherent uncertainties of 

complex biological systems, providing a promising solution to combat antibiotic resistance. The 

findings of this study demonstrate the potential of mathematical modeling using stochastic 

differential equations to optimize the design and application of TMDs nanotubes as antibacterial 

agents, highlighting the importance of interdisciplinary approaches in addressing the pressing issue 

of antibiotic resistance. 

 

REFERENCES 

[1]. Kim, T.I., Kim, J., Park, I., Cho, K., & Choi, S. (2019). Chemically exfoliated 1T-phase 

transition metal dichalcogenide nanosheets for transparent antibacterial applications. 2D 

Materials, 6. 

 

[2]. Pandit, S., Karunakaran, S., Boda, S. K., Basu, B., & De, M. (2016). High antibacterial 

activity of functionalized chemically exfoliated mos2. ACS Applied Materials &Amp; 

Interfaces, 8(46), 31567-31573. https://doi.org/10.1021/acsami.6b10916 

 

GSJ: Volume 12, Issue 6, June 2024 
ISSN 2320-9186 1655

GSJ© 2024 
www.globalscientificjournal.com

https://doi.org/10.1021/acsami.6b10916


[3]. Shen, J., Liu, J., Fan, X., Liu, H., Bao, Y., Hui, A., … & Munir, H. A. (2024). Unveiling 

the antibacterial strategies and mechanisms of mos2: a comprehensive analysis and future 

directions. Biomaterials Science, 12(3), 596-620. https://doi.org/10.1039/d3bm01030a 

[4]. Akiyama, T., & Kim, M. (2021). Stochastic response of bacterial cells to antibiotics: its 

mechanisms and implications for population and evolutionary dynamics. Current opinion 

in microbiology, 63, 104-108 . 

[5]. Braumann, C. A. (2008). Growth and extinction of populations in randomly varying 

environments. Computers &Amp; Mathematics With Applications, 56(3), 631-644. 

https://doi.org/10.1016/j.camwa.2008.01.006 

 

[6]. Mansour, M. B. A. (2023). Stochastic modeling of bacterial population growth with 

antimicrobial resistance. Journal of Statistical Physics, 190(8). 

https://doi.org/10.1007/s10955-023-03157-9 

 

[7]. Zhao, Y., Jia, Y., Xu, J., Han, L., He, F., & Jiang, X. (2021). The antibacterial activities of 

mos2 nanosheets towards multi-drug resistant bacteria. Chemical Communications, 

57(24), 2998-3001. https://doi.org/10.1039/d1cc00327e 

 

[8]. Mondal, A. and De, M. (2022). Exfoliation, functionalization and antibacterial activity of 

transition metal dichalcogenides. Tungsten, 6(1), 1-16. https://doi.org/10.1007/s42864-

022-00196-9 

[9]. World Health Organization. (n.d.). Antimicrobial resistance. World Health Organization. 

Retrieved from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-

resistance 

[10]. Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial 

resistance in 2019: a systematic analysis. The Lancet; 399(10325): P629-655. 

DOI: https://doi.org/10.1016/S0140-6736(21)02724-0 

[11]. Drug-Resistant Infections: A Threat to Our Economic future (March 

2027) https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-

a-threat-to-our-economic-future 

[12]. Gardiner C. W. (2009) Stochastic Methods: A Handbook for the Natural and Social 

Sciences, 4th Ed. Springer, Berlin 

[13]. Andrews, S. S., Dinh, T. N., & Arkin, A. P. (2009). Stochastic models of biological 

processes. Encyclopedia of Complexity and Systems Science, 8730-8749. 

https://doi.org/10.1007/978-0-387-30440-3_524 

[14]. John Lamperti (1977). Stochastic processes: a survey of the mathematical theory. 

Springer-Verlag. pp. 106–121. ISBN 978-3-540-90275-1. 

[15]. Gold, H.J. (1977). Mathematical modeling of biological systems. An introductory 

guidebook. 

[16]. Risken, H. (1996). Fokker-planck equation. The Fokker-Planck Equation, 63-95. 

https://doi.org/10.1007/978-3-642-61544-3_4 

[17]. Kampen, N.G., & Reinhardt, W.P. (1981). Stochastic processes in physics and chemistry. 

GSJ: Volume 12, Issue 6, June 2024 
ISSN 2320-9186 1656

GSJ© 2024 
www.globalscientificjournal.com

https://doi.org/10.1039/d3bm01030a
https://doi.org/10.1016/j.camwa.2008.01.006
https://doi.org/10.1007/s10955-023-03157-9
https://doi.org/10.1039/d1cc00327
https://doi.org/10.1007/s42864-022-00196-9
https://doi.org/10.1007/s42864-022-00196-9
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://doi.org/10.1016/S0140-6736(21)02724-0
https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future
https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future
https://doi.org/10.1007/978-0-387-30440-3_524
https://books.google.com/books?id=Pd4cvgAACAAJ
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-90275-1
https://doi.org/10.1007/978-3-642-61544-3_4


[18]. Kampen, N. V. and Reinhardt, W. P. (1983). stochastic processes in physics and 

chemistry. Physics Today, 36(2), 78-80. https://doi.org/10.1063/1.2915501 

[19]. Verhulst, Pierre-François (1838). "Notice sur la loi que la population suit dans son 

accroissement". Correspondance mathématique et physique. 10: 113–121. Retrieved 18 

February 2013. 

[20]. Murray, J.D.(2002). Mathematical biology. Interdisciplinary Applied Mathematics. 

ISBN978-0-387-95223-9, Springer New York, NY https://doi.org/10.1007/b98868 

[21]. Gupta, Ankur; Rawlings, James B. ( 2014). Comparison of Parameter Estimation 

Methods in Stochastic Chemical Kinetic Models: Examples in Systems Biology. AIChE 

Journal. 60 (4): 1253–1268. doi:10.1002/aic.14409. ISSN 0001-

1541. PMC 4946376. PMID 27429455. 

[22]. Naskar, A., Shin, J., & Kim, K. (2022). A MoS2 based silver-doped ZnO nanocomposite 

and its antibacterial activity against β-lactamase expressing Escherichia coli. RSC 

Advances, 12, 7268 - 7275. 

[23]. Patel, N., Yamada, Y., & Azam, F. (2021). Bacterial nanotubes as intercellular linkages 

in marine assemblages. Frontiers in Marine Science, 8. 

https://doi.org/10.3389/fmars.2021.768814 

[24]. Kloeden, P.E. & Platen, E. (1992). Numerical Solution of Stochastic Differential 

Equations. Springer, Berlin. ISBN 3-540-54062-8. 

[25]. Yang, X., Li, J., Liang, T., Ma, C., Zhang, Y., Chen, H., … & Xu, M. (2014). 

Antibacterial activity of two-dimensional mos2 sheets. Nanoscale, 6(17), 10126-10133. 

https://doi.org/10.1039/c4nr01965b 

[26]. Rao, G., Li, J., Garonzik, S., Nation, R., & Forrest, A. (2018). Assessment and modelling 

of antibacterial combination regimens. Clinical Microbiology and Infection, 24(7), 689-

696. https://doi.org/10.1016/j.cmi.2017.12.004 

[27]. Tarasov, Vasily E. "The Fractional Chapman–Kolmogorov Equation." Modern Physics 

Letters B 21, No. 04 (February 10, 2007): 163–74. 

Http://Dx.Doi.Org/10.1142/S0217984907012712. 

 

 

 

SIMULATION ALGORITHMS IN PYTHON Modeling of Antibacterial Activity of MoS2 (MX2) Transition 

Metal Dichalcogenides (TMDs) Nanotubes against Escherichia coli (E. coli) 
 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

# Parameters 

r_E = 0.2  # E. coli growth rate 
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K_E = 100  # Carrying capacity for E. coli 

alpha_EM = 0.03  # Efficacy of MoS2 

beta_M = 0.03  # Degradation rate of MoS2 

sigma_XE = 0.2  # Volatility of E. coli population 

sigma_MM = 0.2  # Volatility of MoS2 concentration 

dt = 0.01  # Time step 

T = 10  # Total simulation time (in hours) 

N_paths = 10  # Number of sample paths 

 

# Initialize arrays for E. coli and MoS2 

X_E = np.zeros((N_paths, int(T / dt))) 

M_M = np.zeros((N_paths, int(T / dt))) 

time_steps = np.arange(0, T, dt) 

 

# Generate sample paths 

for path in range(N_paths): 

    X_E[path, 0] = 10  # Initial E. coli population 

    M_M[path, 0] = 5  # Initial MoS2 concentration 

    for t in range(1, int(T / dt)): 

        dW_XE = np.random.normal(0, np.sqrt(dt)) 

        dW_MM = np.random.normal(0, np.sqrt(dt)) 

        X_E[path, t] = X_E[path, t - 1] + (r_E * X_E[path, t - 1] * (1 - X_E[path, t - 1] / K_E) - alpha_EM * 

X_E[path, t - 1] * M_M[path, t - 1]) * dt + sigma_XE * X_E[path, t - 1] * dW_XE 

        M_M[path, t] = M_M[path, t - 1] + (-beta_M * M_M[path, t - 1]) * dt + sigma_MM * dW_MM 

 

# Plotting sample paths 

plt.figure(figsize=(18, 12)) 

 

# Time series plots 

plt.subplot(3, 2, 1) 

plt.plot(time_steps, X_E[0], label="E. coli population") 
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plt.xlabel("Time (hours)") 

plt.ylabel("Population") 

plt.title("E. coli Population Over Time") 

plt.legend() 

plt.grid(True) 

 

plt.subplot(3, 2, 2) 

plt.plot(time_steps, M_M[0], label="MoS2 concentration", color='orange') 

plt.xlabel("Time (hours)") 

plt.ylabel("Concentration") 

plt.title("MoS2 Concentration Over Time") 

plt.legend() 

plt.grid(True) 

 

# Phase plane plot 

plt.subplot(3, 2, 3) 

plt.plot(X_E[0], M_M[0], label="Phase Plane") 

plt.xlabel("E. coli Population") 

plt.ylabel("MoS2 Concentration") 

plt.title("Phase Plane Plot") 

plt.legend() 

plt.grid(True) 

 

# Parameter sensitivity plots (showing only one example for brevity) 

plt.subplot(3, 2, 4) 

for r in [0.1, 0.2, 0.3]: 

    X_E_sensitivity = np.zeros(int(T / dt)) 

    X_E_sensitivity[0] = 10 

    for t in range(1, int(T / dt)): 

        X_E_sensitivity[t] = X_E_sensitivity[t - 1] + (r * X_E_sensitivity[t - 1] * (1 - X_E_sensitivity[t - 1] / K_E)) 

* dt 
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    plt.plot(time_steps, X_E_sensitivity, label=f"r_E={r}") 

plt.xlabel("Time (hours)") 

plt.ylabel("E. coli Population") 

plt.title("Parameter Sensitivity: E. coli Population for Different Growth Rates") 

plt.legend() 

plt.grid(True) 

 

# Stochastic simulations (showing only one example for brevity) 

plt.subplot(3, 2, 5) 

for path in range(3):  # Plotting only 3 paths for clarity 

    plt.plot(time_steps, X_E[path], label=f"Realization {path+1}") 

plt.xlabel("Time (hours)") 

plt.ylabel("E. coli Population") 

plt.title("Stochastic Simulations of E. coli Population") 

plt.legend() 

plt.grid(True) 

 

# Bifurcation diagram (simplified example) 

plt.subplot(3, 2, 6) 

for alpha in [0.01, 0.02, 0.03]: 

    plt.scatter(alpha, X_E[0][-1], label=f"α_EM={alpha}")  # Plotting final population size 

plt.xlabel("α_EM") 

plt.ylabel("Final E. coli Population") 

plt.title("Bifurcation Diagram (Simplified)") 

plt.legend() 

plt.grid(True) 

 

plt.tight_layout() 

plt.show() 

 

# Creating data tables for each plot using Pandas 
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time_series_data_ecoli = pd.DataFrame({'Time (hours)': time_steps, 'E. coli Population': X_E[0]}) 

time_series_data_mos2 = pd.DataFrame({'Time (hours)': time_steps, 'MoS2 Concentration': M_M[0]}) 

phase_plane_data = pd.DataFrame({'E. coli Population': X_E[0], 'MoS2 Concentration': M_M[0]}) 

sensitivity_data = pd.DataFrame({'Time (hours)': time_steps, 'E. coli Population (r_E=0.1)': 

X_E_sensitivity}) 

 

# Displaying one example data table 

print("Time Series Data for E. coli Population:") 

print(time_series_data_ecoli.head()) 

 

THE FORKK EQUATION SIMULATION CODE 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

# Parameters 

alpha = 0.5  # Drift coefficient 

beta = 0.1   # Diffusion coefficient 

t_max = 1.0  # Maximum time 

dt = 0.05    # Time step size 

dx = 0.1     # Space step size 

x_min, x_max = -2.0, 2.0  # Spatial domain limits 

n_t = int(t_max / dt)    # Number of time steps 

n_x = int((x_max - x_min) / dx)  # Number of spatial steps 

 

# Initial condition (Gaussian distribution centered at 0 with standard deviation 1) 

def P_0(x): 

    return (1/np.sqrt(2*np.pi)) * np.exp(-0.5*x**2) 

 

# Discretize the spatial domain 

x_values = np.linspace(x_min, x_max, n_x) 
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# Initialize the solution matrix 

P = np.zeros((n_x, n_t)) 

 

# Set the initial condition 

P[:, 0] = P_0(x_values) 

 

# Time evolution 

for i in range(1, n_t): 

    t = i * dt 

    for j in range(n_x): 

        X_E = x_values[j] 

        integral_sum = 0 

        for k in range(n_x): 

            xi = x_values[k] 

            integral_sum += dx * (1/np.sqrt(2*np.pi*beta*t)) * np.exp(-((X_E - xi - alpha*t)**2)/(2*beta*t)) * 

P[k, i-1] 

        P[j, i] = integral_sum 

 

# Generate a table for at least 20 values 

table_data = [] 

for i in range(0, n_t, max(1, n_t//20)):  # Select 20 time steps 

    for j in range(n_x): 

        table_data.append({'Time': i*dt, 'Position': x_values[j], 'Probability': P[j, i]}) 

 

# Convert to DataFrame and display 

df = pd.DataFrame(table_data) 

print(df.head(20))  # Display first 20 rows 

 

# Plotting the results 

for i in range(0, n_t, n_t//10):  # Plot every 10th time step 
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    plt.plot(x_values, P[:, i], label=f't={i*dt:.2f}') 

 

plt.xlabel('X_E') 

plt.ylabel('Probability Density') 

plt.title('Fokker-Planck Equation Solution') 

plt.legend() 

plt.show() 
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