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Abstract
In this artical a nummerical scheme developed for approximate solution of the Fuzzy initial value problems
(FIVPs) . The present numerical approximation scheme based on Fuzzy Laplace transform (FLT) and
Trapezoidal rule (quadrature rule). In the construction of scheme we used hyperbolic contour to approxi-
mate Fuzzy inverse Laplace transform (FILT). Performance of the numerical scheme we developed checked
by applying the scheme to Fuzzy IVPs. Results of our present scheme are compared with the results pro-
duced by different numerical method previously used by different researcher for solution of Fuzzy IVPs.
The numerical experiments produce good results, which show supremacy of the present numerical scheme
over other numerical methods.
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1 Introduction

Fuzzy differential equations (FDEs) play very important role in science and especially in engineering.
Fuzzy differential equations utilized for mathematical modeling of physical phenomena like population
model [5], medicine [1] and gravity [3]. Previously different researcher find the solution of FIVPs by
different numerical as well as analytical methods . In [4] homotopy perturbation method used for the
solution of FIVPs, [7] numerically solved FIVPs by Nystrom method and [6] used fifth order Runge-Kutta
method for numerical approximation of FIVPs. Proposed numerical scheme is disscued in section 2 and
in section 4 applicability of present method checked by solving FIVPs of 1st order.

Definition 1.1. (Fuzzy Initial Value Problem)
FIVPs is defined by

y′(t) = f(t, y(t)), t ε [t0, 1], (1)

y(t0) = y0, where y0 = [y0, y0],

and y(t)r = [y(t, r), y(t, r)], r ε [0, 1].

Definition 1.2. (Laplace Transform) [9, p.449]
Laplace transform for given function p(t) of a real variable t and t ≥ 0 is represented as

L[p(t)] = P (s) =

∫ ∞
0

e−stp(t)dt, Re(s) > 0, (2)

∗The author to whom all the correspondence should be addressed. Email:alizarshad988@yahoo.com

1

GSJ: Volume 12, Issue 6, June 2024 
ISSN 2320-9186 2229

GSJ© 2024 
www.globalscientificjournal.com

admin
Typewritten Text
GSJ: Volume 12, Issue 6, June 2024, Online: ISSN 2320-9186              www.globalscientificjournal.com



here e−st is the kernel of the transformation ,s = x+ iσ and s is transformed complex variable.

Definition 1.3. (Fuzzy Laplace Transform)
The FLT of a given Fuzzy function y(t, r),t ≥ 0 represented as

L[y(t, r)] = Y (s, r) = [

∫ ∞
0

e−sty(t, r)dt,

∫ ∞
0

e−sty(t, r)dt] , Re(s) > 0, (3)

Y (s, r) = [ Y (s, r), Y (s, r)]. (4)

2 Numerical Scheme

Fuzzy IVP is given by
y′(t) = f(t, y(t)), t ε [t0, 1], (5)

y(t0) = y0.

Applying Fuzzy Laplace transform to FIVP given in equation (5) we got

sL{y(t)} − y(0)r = F (s, Y (s)), (6)

sY (s)− y(0)r = F (s, Y (s)), Where L{y(t)} = Y (s). (7)

After simplification we got the following results

Y (s, r) =
y(0, r)

F (s)
, (8)

and

Y (s, r) =
y(0, r)

F (s)
. (9)

For inverse Laplace transform [9, p.450] of Y (s, r)

y(t, r) =
1

2π i

∫ C+i∞

C−i∞
Y (s, r)est ds, (10)

and for Y (s, r) we have

y(t, r) =
1

2π i

∫ C+i∞

C−i∞
Y (s, r)est ds. (11)

2.1 Approximations of Path(Path of integration)

The ILT of some function is not easy to calculated and in some case even not exist. In this paper we use
concept of contour integration and choose a contour for the approximation of the line C− i∞ to C+ i∞.
For the approximation of integration path we have to select a contour which give us precise result. The
one Contour is parabolic and the other one is hyperbolic [8, 10].
Parametric presentation of hyperbolic is given by

s = ω + λ (1− sin(σ − i u)), −∞ < u <∞, (12)

in this paper we will used hyperbolic contour.

y(t, r) =
1

2π i

∫
Γ

Y (s, r)est ds, (13)

and

y(t, r) =
1

2π i

∫
Γ

Y (s, r)est ds. (14)
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Where the Γ represent the left branch of hyperbolic contour of integration given in (12) then equation
(13) and (14) become

y(t, r) =
1

2π i

∫
Γ

Y (s(u), r)es(u)ts′(u) du, (15)

y(t, r) =
1

2π i

∫
Γ

Y (s(u), r)es(u)ts′(u) du, (16)

where Y (s(u)) = Y (s) and use equal weight quadrature rule ( tarpezodial rule) with k > 0 here we set
take sj = z(uj), s

′
j = s′(uj) the equations (15) and (16) can be approximated as

y
N

(t, r) =
k

2π i

N∑
j=−N

y(sj)e
sjts′j , (17)

and

yN (t, r) =
k

2π i

N∑
j=−N

y(sj)e
sjts′j . (18)

Theorem 2.1. [8] Let y is solution of (5) and f̂ is analytic in Σωβ .Let 0 < t0 < T ,0 < θ < 1, and let b > 0

is given as cosh b = 1
(θτ sinσ) where τ = t0/T .Let r satisfy 0 < r < min(σ, β−π/2−σ) so that Γ ⊂ Sr ⊂ Σωβ

, and let the scaling factor be λ = θr̃N/(bT ).Therefore, we have for the approximate solution yN (t) defined

by (17) and (18) with k = b/N ≤ r̃/ log 2 . ||yN (t)− y(t)|| ≤ CMeωt l(ρrN) e−µN (||y0|| + ||f̂ ||Σωβ ), for

t0 ≤ t ≤ T , where µ = r̃(1− θ)/b ,ρr = θr̃τ sin (σ − r)/b, and C = Cσ,r,β .

3 Data Use

Following data is used in the numerical experiments T=2,t0 = 0.01 θ = 0.1, σ = 0.3812, τ = (t0/T ), b =
cosh−1(1/(θτ sin(σ))), ϕ = 0.3431, ϕ̃ = 2πr, k = b/N, w = 02, λ = (θϕ̃N)/(bT ), E1 = |y(t, r)−y

N
(t, r)|,

E2 = |y(t, r)− yN (t, r)| and Eb = Error bound

4 Numerical Experiments

Experiment 1 [2] Let us consider the Fuzzy IVPs

y′(t) = y(t), t ε [0, 1], (19)

y(0) = (0.8 + 0.125r, 1.1− 0.1r), r ε [0, 1].

The exact solution at t=1 is

y(1, r) = [(0.8 + 0.125r)e, (1.1− 0.1r)e), where y(1, r) = (0.8 + 0.125r)e and y(1, r) = (1.1− 0.1r)e.

Solution:

After applying Fuzzy Laplace transform (19), we got the result

Y (s, r) = 0.8+0.125r
s−1 and Y (1, r) = 1.1−0.1r

s−1 , where Y (s, r), Y (s, r) are the Laplace transform of y(t, r), y(t, r)
respectively. Applying the present numerical scheme, we got result given in table1 at t = 1 and N = 200
(Number of steps).
Experiment 2 [4]

y′(t) = 2.y(t) + (t2 + 1), t ε [0, 1], (20)

y(0) = (r, 2− r), r ε [0, 1].
The exact solution of (21) is
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y(t, r) = ((r+ 3
4 )e2t− 1

4 (2t2+2t+3), ( 11
4 −r)e

2t− 1
4 (2t2+2t+3)), where y(t, r) = (r+ 3

4 )e2t− 1
4 (2t2+2t+3),

and y(t, r) = (11
4 − r)e

2t − 1
4 (2t2 + 2t+ 3).

Solution:

Applying Fuzzy Laplace transform (21), we have

Y (s, r) = (r+s3+s2+2)
s3(s−2) and Y (s, r) = ((2−r)s3+s2+2)

s3(s−2) . Using the present numerical scheme, we have the

result given in table 2 at t = 0.1, 0.3.
Experiment 3 [4]

y′(t) = −3y(t) + et, t ε [0, 1], (21)

y(0) = (r − 1, 1− r), r ε [0, 1].
The exact solution of (??) is

y(t, r) = ((r− 5
4 )e−3t+ 1

4e
t, ( 3

4−r)e
−3t+ 1

4e
t), where y(t, r) = (r− 5

4 )e−3t+ 1
4e
t and y(t, r) = (3

4−r)e
−3t+ 1

4e
t.

Solution:

Applying Fuzzy Laplace transform (??), we have

Y (s, r) = (r−1)
(s+3) + 1

(s+3)(s−1) and Y (s, r) = (1−r)
(s+3) + 1

(s+3)(s−1) . Using the present numerical scheme,

we have the result given in table 3 at t = 0.1, 0.3 and r = 0, 0.1, 0.2, 0.3, 0.4, 0.5 0.6 0.7 0.8 0.9 1.

r E1 E2 Eb

0 1.4388e-13 1.9718e-13
0.2 1.4699e-13 1.9407e-13
0.4 1.5277e-13 1.9007e-13
0.6 1.5765e-13 1.8607e-13
0.8 1.6209e-13 1.8208e-13 4.

92
90

e-
18

1 1.6609e-13 1.7852e-13

Table 1: Absolute error between numerical solution of (19) using present numerical schemes and exact
solution for N=200.
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t=0.1 t=0.3 t=0.1 t=0.3

r E1 E2 E1 E2 Eb

0 1.2213e-15 1.1102e-14 3.2197e-15 3.0198e-14
0.1 1.8041e-15 1.1102e-14 4.6629e-15 2.8422e-14
0.2 2.2205e-15 9.7699e-15 5.8842e-15 2.8413e-14
0.3 2.5535e-15 9.3259e-15 6.9932e-15 2.6646e-14
0.4 3.3306e-15 8.8818e-15 8.8818e-15 2.5757e-14
0.5 3.5507e-15 8.4378e-15 9.9920e-15 2.3537e-14 4.

92
90

e-
18

4.
92

90
e-

18

0.6 3.8858e-15 7.5495e-15 1.1546e-14 2.2205e-14
0.7 4.4409e-15 7.9936e-15 1.2657e-14 2.0872e-14
0.8 4.8850e-15 7.1055e-15 1.4211e-14 1.9096e-14
0.9 5.9952e-15 6.6613e-15 1.5543e-14 1.7319e-14
1 6.2172e-15 6.2125e-15 1.5987e-14 1.5987e-14

Table 2: Absolute error between numerical solution of (21) using present numerical schemes and exact
solution for N=200.

(a) (b)

Figure 1: (a) Comparision between the exact soltion and the approximate solution of y(t, r) given in
Experiment 1 . (b) Comparing the exact and the approximate solution of y(t, r) given in Experiment 1.
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t=0.1 t=0.3 t=0.1 t=0.3

r E1 E2 E1 E2 Eb

0 9.9924e-16 1.8874e-15 3.5810e-15 6.1063e-15
0.1 8.8846e-16 1.6653e-15 3.1365e-15 5.4402e-15
0.2 6.6639e-16 1.7767e-15 2.5951e-15 4.9960e-15
0.3 5.5584e-16 1.3323e-15 2.1441e-15 4.5519e-15
0.4 3.8908e-16 1.5544e-15 1.6411e-15 4.2189e-15
0.5 1.6729e-16 1.1657e-15 1.1868e-15 3.6082e-15 4.

92
90

e-
18

4.
92

90
e-

18

0.6 1.1106e-16 1.0547e-15 6.9390e-16 3.2198e-15
0.7 5.5514e-17 9.4370e-16 2.0880e-16 2.6646e-15
0.8 2.0828e-16 7.2165e-16 2.4983e-16 2.2204e-15
0.9 3.2963e-16 6.3838e-16 7.7716e-16 1.6653e-15
1 4.7190e-16 4.7190e-16 1.2212e-15 1.2212e-15

Table 3: Absolute error between numerical solution of (??) using present numerical schemes and exact
solution for N=200.

(a) (b)

Figure 2: (a) Comparision between the exact and the approximate solution of y(t, r) given in Experiment
2. (b) Comparing the exact and the approximate solution of y(t, r) given in Experiment 2.
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(a) (b)

Figure 3: (a) Comparision between the exact and the approximate solution of y(t, r) given in Experiment
3. (b) Comparing the exact and the approximate solution of y(t, r) given in Experiment 3.
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5 Conclusion

The numerical experiment show the efficiency of the present numerical algorithm.The proposed method is
useful and easy to apply not only to FIVPs but also to Fuzzy Volterra integral equation. Especially for
the Fuzzy Volterra integral equation involving convolution of functions.
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