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Software error Prediction is an important aspect in software 
development and maintenance processes with an objective of 
locating and fixing defects ahead of schedule that could be 
expected under diverse circumstances. Predicting software errors 
especially in earlier phase improves the software quality, 
reliability, efficiency also the software testing cost. Many software 
development activities are performed by various individuals, 
which may lead to occurrence of different software errors, causing 
disappointments later during use Various software defect 
prediction (SDP) approaches that rely on software metrics have 
been proposed in the last two decades. Bagging, support vector 
machines (SVM), decision tree (DS), and random forest (RF) 
classifiers are known to perform well to predict defects. This paper 
presents a software error prediction model based on Artificial 
Neural Network algorithm (ANN). The evaluation process showed 
that error back propagation algorithm can be used effectively with 
high accuracy, precision and f-score rate. Furthermore, a 
comparison measure is applied to compare the proposed prediction 
model with other approach. The collected results showed that the 
(ANN) approach has a better performance. 

 

1. Introduction 

Software defect prediction plays a crucial role in software 

engineering by enhancing quality and ensuring timely, 

cost-effective development. It is applied before the testing 

phase of the software development life cycle. Numerous 

researchers have focused on developing various models, 

both within and across projects, to improve software 

quality and monitoring efficiency. There are two 

approaches that can be used to build a software defect 

prediction model that is supervised learning and 

unsupervised learning. Supervised learning has the 

problem that, to train the software defect prediction model, 

there is need for a historical data or some known results, 

while on the other hand, unsupervised learning analyze 

and cluster unlabeled data sets and discover a hidden 

pattern or data groupings. There are many public datasets 
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which are available, free for the researchers like 

PROMISE, Eclipse and Apache to overcome the 

challenging problem of training data performed on new 

project (Rakesh Rana., 2015) 

Software defect prediction methods leverage past software 

metrics and fault data to identify faulty modules in 

upcoming software releases. To meet software quality 

assurance goals, quality models serve as valuable tools for 

detecting flawed program modules. A software defect is a 

coding error that can cause the software to behave 

unexpectedly, potentially leading to errors or failures. 

These defects, often caused by programming mistakes, can 

sometimes result in recoverable faults. 

Once such faults are detected, they are sent to 

appropriate handler for performing required steps. Defects 

prediction will give an opportunity to the team to retest 

again the modules or files which are faulty or for which the 

probability of defectiveness is more. Focusing more on 

defective modules rather than non-defective ones ensures 

efficient use of resources, making project maintenance 

significantly easier such that, it is beneficial for both 

software users as well as project owners. The exact 

prediction of where the defects are probable to occur in 

code can help directly to test effort, enhance the software 

quality and reduce costs. A fault susceptible module is the 

one in which the quantity of faults is higher than selected 

threshold. Today the greatest challenge in the software 

industry is to make any application or software completely 

fault free to achieve the best software. As the defected 

modules are recognized, it is easier for the experts to focus 

only on the development work. 

The different types of software metrics like class level, 

method level, file level, process level are used to find fault 

in the software, before the testing of software at early 

stage of software developments life cycle. There are 

different methods which are used to find the software 

defects, the methods are statistical method, machine 

learning method, and expert analysis system (Iker Gondra, 

2008). The number of faults in the software causes 

problems in system performance and the software 

containing many faults delivered to the user. So, there is 

need for an automated model which takes less time and 

predict the approximate faults existing in the system 

 

1.1 Artificial Neural Network 

ANN is a machine learning method based on a model that 

can be used for classification. An ANN model is composed 

of multiple layers of interconnected units known as neuron. 

Training the ANN model with a set of data with known 

labels, the ANN model can learn to predict the values of 

unknown data. An Artificial neural network has mainly 

three layers: an input layer, an output layer, and an 

intermediate or hidden layer. The input layer neurons 

distribute the input signals  to neurons in the hidden 

layer(s). Each hidden layer neuron j sums up its input 

signals  after weighing them with the strengths of the 

respective connections  from the input layer. 

 

Fig 1.  An image showing an Artificial Neural Network 

(ANN) with several intermediate and hidden layers 

respectively 

In Figure 1, If  and  are the activation and the learned 

weight of the previous layer that are connected to a node, 

the output (activation) of that node would 

be . In this equation,  is a learned 

constant bias and  is a non-linear function e.g. ReLU, 

sigmoid. 

 

1.2 Statement of problem 

As the dependence on software for managing and 

executing daily operations continues to rise, the emphasis 

on software quality becomes increasingly crucial. This is 

especially relevant as many organizations are now aligning 

their business goals with enhancing customer satisfaction 

and fostering profitable growth through expanded software 

utilization. In this context, even a minor flaw or 

inefficiency in the software can lead to substantial 

financial losses, potentially in the millions of naira and 

damage customer retention, highlighting the critical need 

for maintaining strong software quality. 
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2.0 Related work 

The common software defect prediction process follows 

both statistical and machine learning approach. But 

recently, studies have focused more on machine learning 

and its distinctive performance as compared to statistical 

approach. 

According to (Xin Fan, Liangjue Lian, Li Yu, Wei Zheng, 

Yun Ge, 2024), it was opined that target projects often lack 

sufficient data, which affects the performance of the 

transfer learning model and also the presence of 

uncorrelated features between projects can lead to a 

reduction in the prediction accuracy of the transfer 

learning model. A software defect prediction system based 

on stable learning (SDP-SL) that combines residual 

networks and code visualization techniques was 

introduced to address these issues, using code 

visualization techniques, this method first converts code 

files into code images, which are then used to build a 

defect prediction mode. Finally, the performance 

evaluation showed that it outperformed other 

within-project and cross-project models, therefore, can 

effectively enhance defect prediction. 

In (Misbah Ali, Tehseen Mazhar, Yasir Arif, Shaha 

Alotaibi et al., 2024), an ensemble-based prediction model 

for software defects that integrates various classifiers was 

developed, the model used a two-step prediction procedure 

to identify faulty modules. In the first stage, Random 

Forest, Support Vector Machine, Naïve Bayes, and 

Artificial Neural Network were the four supervised 

machine learning algorithms used. To attain the maximum 

accuracy feasible, these algorithms underwent an iterative 

parameter optimization. Furthermore, in the second stage, 

the predictive accuracy of the individual classifiers was 

integrated into a voting ensemble to make the final 

predictions. In conclusion, a comparative analysis with 

twenty state-of-the-art techniques was carried out to 

establish the effectiveness of the proposed framework and 

the result demonstrated that a remarkable accuracy was 

achieved as compared to the aforementioned 

state-of-the-art techniques. 

The study in (Bhaskar Marapelli, Anil Carie, and Sardar 

Islam, 2023) assessed the existing dataset used for 

software prediction models and suggested that there was 

problem of noisy attributes and class imbalance. To solve 

this, ROS-KPCA-SG model (Random Over 

Sampling-Kernel Principal Component Analysis Staked 

Generalization Model) model was proposed to solve the 

problem. The performance of the model was compared 

with individual models with different combinations of 

sampling techniques. The results showed the proposed 

ROS-KPCA-SG model solves the problems and gave 

better performance than other models. For instance, it was 

observed that, the AUC-ROC score is between 0.9 and 1 

for the ROS-KPCA-SG model on all the datasets, and the 

accuracy is near to 90% and above which was a higher 

value than other models compared. 

(Bahman Arasteh, Sahar Golshan, Shiva Shami, and 

Farzad Kiani. Sahand, 2024) Discussed the concept of 

reducing the time needed to create software defect 

predictor. By using a hybrid method combining the 

auto-encoder and the K-means algorithm clustering error 

and time was lowered. In order to choose the training 

dataset’s effective attributes and subsequently minimize its 

size, the auto-encoder algorithm was employed as a 

pre-processor and consequently led to a reduction in size 

of the datasets. In addition, Tests carried out on the 

standard NASA PROMISE datasets show that the 

suggested fault predictor has an improved accuracy of 

(96%) and precision of (93%), after eliminating the 

inefficient elements from the training data set. The 

suggested method yields a recall criterion of about 87%. 

It is believed that some machine learning algorithms 

perform poorly with a small size of dataset, as an example, 

Naive Bayes’s algorithm achieved a higher accuracy value 

when tested on a larger dataset as compared to a small 

dataset. (Awni Hammouri, Mustafa Hammad, Mohammad 

Alnabhan, and Fatima Alsarayrah, 2018) Confirmed this 

assertion by analyzing three supervised ML algorithms to 

predict software defects based on historical data. These 

classifiers which are; Naïve Bayes (NB), Decision Tree 

(DT) and Artificial Neural Networks (ANNs).ANN, 

however had the highest accuracy value, followed by DT 

and lastly NB 

 

3.1 Approach to Research 

This stage involves acquiring appropriate datasets that will 

be used in this research. Therefore, the datasets will be 

acquired from http://bug.inf.usi.ch/download.php which is 

publicly accessible for use. 

The following stage is the feature selection stage which 

will be achieved by using Principal Component Analysis 

(PCA) in order to extract the relevant features from the 

datasets that will be collected in the first stage. 
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In this third stage, classification of the data will take place, 

the extracted features will be classified using error back 

propagation neural Network learning machine classifier. 

Finally, evaluation of the results will be done using 

precision, recall, accuracy, and f –score. 

 

3.1.1 Data Collection 

Software defect datasets often highlight specific 

components or modules within a system that are prone to 

defects. These defects can vary in granularity and manifest 

at different levels of the software architecture. Such 

datasets primarily derive information from software metrics 

and developer-related details. Software metrics are 

typically classified into three categories: requirements 

metrics, product metrics, and process metrics. Examples of 

metrics used in software defect analysis include measures 

of software engineer productivity, as well as aspects of 

software design and maintenance. Some metrics are 

directly measurable, while others require analytical 

methods. For instance, in object-oriented (OO) software, 

design coupling metrics such as Coupling Between Objects 

(CBO), Response for a Class (RFC), Message Passing 

Coupling (MPC), and Information-Flow-Based Coupling 

(ICP) are critical for defect prediction. Additional 

important software metrics include Lines of Code (LOC), 

McCabe Cyclomatic Complexity (MCC), McCabe 

Essential Complexity (MEC), McCabe Module Design 

Complexity (MMDC), and Halstead metrics, (McCabee T, 

1996). These metrics provide valuable insights into various 

aspects of software quality and defect likelihood. 

The proposed methodology is applied on Aerospace 

Engineering and Engineering Mechanics (AEEM) suite 

dataset which is a software data repository collected by [2] 

and is comprised of metric and bugged data from four 

different open source projects (JDT: Eclipse JDT core, 

PDE: Eclipse PDE UI, EQ: Equinox Framework, Luc: 

Apache Lucence). Each dataset contains 62 software 

metrics including OO, previous defects, and change 

metrics. This dataset was created under a distinct setting 

compared to the NASA dataset and focuses on defect 

prediction at the class level. The Aerospace Engineering 

and Engineering Mechanics (AEEM) dataset includes 

features such as source code metrics, change metrics, 

entropy of source code metrics, and churn of source code 

metrics. The datasets could be acquired from 

http://bug.inf.usi.ch/download.php which is publicly 

accessible for use, additionally, the dataset is free of noise, 

and this noise refers to the incorrect software data caused 

by some unexpected reasons, such as unintentional errors 

in collecting or transferring the values of software features. 

The first data collection phase is to find defects from the 

repository and collect all valuable pieces of information. 

 

3.2 Feature Selection 

             The research applies Principal Component 

Analysis (PCA) using a wrapper method for linear 

dimensionality reduction, which minimizes the number of 

features by identifying principal components (PCs) with the 

most significant variance. The goal of PCA is to retain as 

much information as possible while reducing 

dimensionality. The M is a t-dimensional data set. The n 

principal axes G1, G2... Gn here 1 ≤ n ≤ t, are orthonormal 

axes onto which the retained variance is maximum in the 

projected space (] Peter N. Belhumeur, João P. Hespanha, 

and David J. Kriegman, 1996). Commonly G1, G2... Gn 

can be given by the n leading eigenvectors of the sample 

covariance matrix: These axes correspond to the leading 

eigenvectors of the sample covariance matrix C. 

C=       3.1                                  

Here   ,  is the mean of samples,  is the 

number of samples. According to this:                            

    3.2                                                 

Here  is the kth largest eigenvalue of U. The n principal 

components of a given observation vector  are 

given as below: 

Q= [q1, q2, q3.. qn] = [[ ]= ]  3.3                                

There, q is the n principal components of x 

PCA is favored for its low sensitivity to noise, reduced 

memory requirements, elimination of data redundancy 

through orthogonal components, and improved processing 

time and classification accuracy. Additionally, PCA is an 

unsupervised method, making it adaptable for various 

applications. 
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3.3 Methods for Updating the Weight Vector 

 

Levenberg Marquardt (LM) Method: The 

Levenberg-Marquardt (LM) method iteratively identifies 

the minimum of a multivariate function, expressed as the 

sum of squares of nonlinear real-valued functions. This 

approach is utilized for updating weights during the 

learning process. Compared to the gradient descent 

method, the LM method offers faster and more stable 

execution, as it combines the principles of steepest descent 

and Gauss-Newton methods. In LM method, weight vector 

𝑊 is updated as follows: 

   3.4                                            

where 𝑊𝑘+1 is the updated weight, 𝑊𝑘 is the current 

weight, 𝐽 is Jacobian matrix, and 𝜇 is combination 

coefficient; that is, when 𝜇 is very small then  It functions 

as the Gauss-Newton method when 𝜇 is small, and as the 

Gradient Descent method when 𝜇 is significantly large. 

Jacobian matrix is calculated as follows:                      

 

3.3 Cross Validation 

 

   This technique is highly effective for assessing 

different combinations of feature selection, dimensionality 

reduction, and learning algorithms. A popularly used 

validation method is k-fold cross-validation. In this 

approach, the original training dataset is split into k 

separate subsets, referred to as "folds". One fold is set 

aside as the test set, while the remaining k-1 folds are used 

to train the model. For example, if k is set to 4 (i.e., 4 

folds), three of the subsets would be used for training, and 

the fourth would be used for evaluation. Once all four 

iterations are complete, the average error rate and standard 

deviation are calculated, offering insights into the model's 

generalization performance. 

 

3.4 Performance Evaluation Measures 

The performance of software defect prediction models is 

evaluated using various measures, including; 

True Positive (TP): TP represents the count of defective 

software instances that have been accurately identified as 

defective.  

True negative (TN): TN is the number of clean software 

instances that are correctly classified as clean. 

False Positive (FP): Refers to the number of 

non-defective software instances incorrectly classified as 

defective.  

False Negative (FN): Refers to the number of defective 

software instances incorrectly classified as non-defective. 

One of the simplest and most commonly used metrics for 

assessing the performance of predictive models is 

classification accuracy, also known as the correct 

classification rate. It measures the proportion of correctly 

classified instances relative to the total number of 

instances. Another important metric is precision, 

calculated as the ratio of correctly classified defective 

instances (TP) to the total instances classified as defective 

(TP + FP). Additionally, recall measures the proportion of 

correctly identified defective instances (TP) to the total 

defective instances (TP + FN). The F-score, which is the 

harmonic mean of precision and recall, is widely 

employed in literatures also as an evaluation metric. 

 

                                 

3.5 

 

Accuracy takes into account both true positives and true 

negatives across all instances. In other words, it represents 

the proportion of instances that are correctly classified 

  3.6                       

It is the ratio of the number of instances correctly identified 

as defective (TP) to the total number of instances classified 

as defective (TP + FP). 

       3.17                                                                 

It is the proportion of instances correctly identified as 

defective (TP) relative to the total number of faulty 

instances (TP + FN) 
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  3.15                                        

The harmonic mean of precision and recall 

3.5 Evaluation of Classification Quality  

 In this research, we adopted binary classification, which 

means that we predict whether a component/file has a 

defect or not. Table 1 below presents the confusion matrix, 

which is commonly used to evaluate the performance of 

binary classification models. 

Table 1. Confusion matrix 

Defects are observed 

TRUE 
FALSE 

 

Predicted 

Condition 

 

Positive 

 

True 

Positive 

 

False 

Positive 

Negative False 

Negative 

True 

Negative 

 

 

Figure 2 Architecture of the model 

3.6 Error Back-Propagation 

 

Error back-propagation learning involves two distinct 

phases: a forward pass and a backward pass. In the 

forward pass, the input is fed into the neural network and 

propagated through each layer, while keeping the network 

weights unchanged. During this phase, the network 

produces an output. In the backward pass, the error is 

calculated as the difference between the desired output and 

the actual output from the network. This error is then 

propagated backward through the network to update and 

adjust the weights based on the error values. This 

adjustment follows a systematic process governed by a 

learning rule. The training process starts with randomly 

initialized weights, and the objective is to fine-tune these 

weights to minimize the error. The adjustment process 

continues iteratively until the performance of the network 

reaches an acceptable level. The activation function used 

in the neurons of artificial neural networks that employ the 

back-propagation algorithm is typically a weighted sum of 

the inputs Xi, where each input is multiplied by its 

corresponding weight Wji. This process ensures the gradual 

optimization of the network to improve predictive 

accuracy. 

 

4.0 Result and Discussion 

 

The experiment was conducted by extracting relevant 

features from the datasets, as outlined in the methodology, 

using principal component analysis. This step significantly 

impacts system error prediction, as iterative feature 

additions and modifications in software tend to increase 

system complexity. However, the machine learning 

algorithm used to build the software prediction system in 

this research is Artificial Neural Network (Levenberg 

Marquardt algorithm) classifier and the performance 

evaluation were determined. MATLAB (R2018a) was used 

as the development environment using statistical toolkit.  

Moreover, the “weighted-ent” dataset has 22 

software metrics with varying amount of instances. These 

is evident in the GUI representation of each data set as 

shown in fig 3, 4, 5 and 6. 

 

 

 

 

Fig 3 Distribution of eclipse JDT CORE showing 22 features 

and 9 instances 
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Fig. 4 The distribution of Eclipse PDE UI with a similar 

number of 22 features and 25 instances 

 

Fig. 5 The distribution of Equinox framework with 22 

features and 12 instances 

 

 

 

         Fig. 6 The distribution of LUCENE with a similar 

number of 22 features and 9 instances 

In order to eliminate the possibility of over fitting, feature 

selection was employed. PCA was used to extract the 

features that most affect the output which is the number of 

bugs in this case. 

Four times 4-fold cross validation was performed 

when evaluating the prediction system. The datasets were 

separated into four equal parts. Three parts out of four are 

used as training data and the feature selection process 

while the forth part is used for testing. In order for every 

instances of the datasets to be used as testing and training, 

this process was repeated four times. Cross-validation was 

used due to the limited amount of data, offering an 

advantage over the holdout method. In the holdout method, 

the dataset is divided into two parts: one is used for 

training, and the other for testing. In this research, the 

solution to the bias idea was adopted using cross 

validation where all the instances were used one time for 

testing and training. This simply means that, instead of 

conducting four folds, a total of 16 folds is generated and 

the error estimate is therefore more reliable.  

 

 

Figure 7 Architecture of Error back propagation 

neural network 

Fig. 7 shows that the architecture used for error-back 

propagation algorithm with 14 neurons (i.e. features of 

dataset) in input layer. Hidden layer uses 10 neurons and 5 

neurons in its output layer and eventual output 

respectively. 

 

4.1 Confusion Matrix 

Confusion matrix also referred to as an error matrix which 

reports the number of True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN) where 

TP is the correct positive prediction, FP is the incorrect 

positive prediction, TN is the correct negative prediction 

and FN is the incorrect negative prediction. Having 

conducted the experiments, the confusion matrix where 

the true conditions are the actual results, that is the original 

result from the file and predicted condition are the result 

from the predictors which are presented in Table 2. 

 

GSJ: Volume 12, Issue 11, November 2024 
ISSN 2320-9186 1194

GSJ© 2024 
www.globalscientificjournal.com



Page | 8 

 

Fig. 8 Training and Validation for Eclipse JDT Core 

 

Fig. 9 Training and Validation for Eclipse PDE UI 

 

 Fig. 10 Training and Validation for Equinox 

 

 

Fig. 11 Training and Validation for Lucene 

4.2 System Evaluation 

 

The system was measured in terms of accuracy, precision, 

recall and f-score. As shown in Table 1, accuracy is 

described as the ratio of all correctly classified instances. 

Precision measures the fraction of faulty modules that are 

actually faulty. It is a measure of how good the prediction 

system is at identifying actual faulty files. Recall measures 

the percentage of fault-prone modules that are classified 

correctly. 

   According to the conducted experiments the 

percentage of the True Positive Rate (TPR) and True 

Negative Rate (TNR) of the datasets used in this research 

work; ECLIPSE JDT CORE, ECLIPSE PDE UI, 

EQUINOX FRAMEWORK, and LUCENE are (79.31% 

and 88.24%), (45.45% and 87.97%), (65.22% and 73.81%) 

and (50.00% and 93.85%) respectively. The training and 

validation for the datasets ECLIPSE JDT CORE, 

ECLIPSE PDE UI, EQUINOX FRAMEWORK, and 

LUCENE was conducted. However, the best validation 

performance is 0.52482 at epoch 5, 0.21032 at epoch 5, 

0.67527 at epoch 9 and 0.01356 at epoch 10 respectively. 

Table 1 System Results of the Accuracy, Precision, Recall, 

and F-Score 

Name 

Acc

urac

y 

Prec

isio

n 

Re

call 

TP

R 

TN

R 

Bala

nced 

Acc

urac

y 

F1 

Sco

re 

ECLIP

SE JDT 

CORE 

86.9

3% 

53.4

9% 

79.

31

% 

79.

31

% 

88.

24

% 

83.7

8% 

63.

89

% 

ECLIP

SE 

PDE UI 

83.2

8% 

31.9

1% 

45.

45

% 

45.

45

% 

87.

97

% 

66.7

1% 

37.

50

% 
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EQUIN

OX 

FRAM

EWOR

K 

  

70.7

7% 

57.6

9% 

65.

22

% 

65.

22

% 

73.

81

% 

69.5

1% 

61.

22

% 

LUCE

NE 91.3

0% 

33.3

3% 

50.

00

% 

50.

00

% 

93.

85

% 

71.9

3% 

40.

00

% 

 

 

Table 2 Confusion matrix results 

 

ECLIPSE JDT CORE 

 True Conditions 

Predicted 

Condition 

 True False 

True  23 (TP) 20 (FP) 

False 6 (FN)  150 (TN)  

ECLIPSE PDE UI 

 True Conditions 

Predicted 

Condition 

 True False 

True  15 32 

False 18 234 

EQUINOX FRAMEWORK 

 True Conditions 

Predicted 

Condition 

 True False 

True  15 11 

False 18 31 

LUCENE 

 True Conditions 

Predicted 

Condition 

 True False 

True  4 8 

False 4 122 

4.4 Comparison to Related Study 

 In Table 3, the implemented result of the proposed model 

is being illustrated and compared with those of classifiers 

such as in Rizwan et al. (2017) which made use of similar 

performance metrics. That is accuracy, f1-score, precision. 

It can be seen that the proposed model performed better 

than the model been compared with. It is further compared 

to the average accuracy result of the related study. Rizwan 

et al. (2017) proposed a system to predict defects specific 

to concurrent programs by combining both static and 

dynamic program metrics. 

Table 3 Comparison of Rizwan’s model against the 

Developed Model 

 

Name 

Accurac

y 

Precisio

n Recall 

F- 

Score 

 

Rando

m 

Forest 18.70% 59.74% 

37.16

% 

43.68

% 

 

Naïve 

Bayes 17.10% 47.04% 

45.54

% 

43.62

% 

 

J48   43.58 49.38% 

46.70

% 

12.20

% 

 

Propose

d 

Model 83.07% 44.10% 

59.99

% 

50.65

% 

 

 

0

20

40

60

80

100

Accuracy Precision Recall F-score

Random forest Naïve Bayes J48 Proposed model

 

Figure 12 Comparison of Rizwan’s model against the 

Developed Model 

 

5.0 Summary and Conclusion 

This research focused primarily on prediction of software 

error or bugs on one the most well-known machine 

learning algorithms that are used to predict software 

defects. The performances of the model algorithms was 

evaluated using classification accuracy, precision, recall 

and F-score. The cross-validation strategy was employed 

to deal with the bias issue. The outcomes of the conducted 

experiment showed that the proposed model performed 

well in terms of accuracy. However, there is room for 

more extensive research and study in this domain because, 

software development is ever evolving with new 

approaches and frameworks.so, and this may give rise to 

new errors in the future and thus a need for continuous 

optimization. 
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