
Page | 1

GSJ: Volume 12, Issue 11, November 2024, Online: ISSN 2320-9186

www.globalscientificjournal.com

SOFTWARE ERROR PREDICTION MODEL USING DEEP

NEURAL NETWORK

Salman Ibrahim Marafa1,*, Wurie Barrie Amadu2 and Funsho Ahmed Dauda 2

1 Department of software engineering, Nankai University, Tianjin,

China; marafasalman@gmail.com
2 Department of software engineering, Nankai University, Tianjin,

China; codewithbawurie@gmail.com
3 Networking department, the Nigerian television Authority, Ilorin,

Nigeria; fard4trust2002@gmail.com

* Marafa S.I, marafasalman@gmail.com; Tel.: (+86-13752034504)

Article information Abstract

Keywords:

ANN, RF, SDP, SVM, RF,

DS

Software error Prediction is an important aspect in software
development and maintenance processes with an objective of
locating and fixing defects ahead of schedule that could be
expected under diverse circumstances. Predicting software errors
especially in earlier phase improves the software quality,
reliability, efficiency also the software testing cost. Many software
development activities are performed by various individuals,
which may lead to occurrence of different software errors, causing
disappointments later during use Various software defect
prediction (SDP) approaches that rely on software metrics have
been proposed in the last two decades. Bagging, support vector
machines (SVM), decision tree (DS), and random forest (RF)
classifiers are known to perform well to predict defects. This paper
presents a software error prediction model based on Artificial
Neural Network algorithm (ANN). The evaluation process showed
that error back propagation algorithm can be used effectively with
high accuracy, precision and f-score rate. Furthermore, a
comparison measure is applied to compare the proposed prediction
model with other approach. The collected results showed that the
(ANN) approach has a better performance.

1. Introduction

Software defect prediction plays a crucial role in software

engineering by enhancing quality and ensuring timely,

cost-effective development. It is applied before the testing

phase of the software development life cycle. Numerous

researchers have focused on developing various models,

both within and across projects, to improve software

quality and monitoring efficiency. There are two

approaches that can be used to build a software defect

prediction model that is supervised learning and

unsupervised learning. Supervised learning has the

problem that, to train the software defect prediction model,

there is need for a historical data or some known results,

while on the other hand, unsupervised learning analyze

and cluster unlabeled data sets and discover a hidden

pattern or data groupings. There are many public datasets

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1188

GSJ© 2024
www.globalscientificjournal.com

http://www.globalscientificjournal.com/
mailto:codewithbawurie@gmail.com
mailto:fard4trust2002@gmail.com

Page | 2

which are available, free for the researchers like

PROMISE, Eclipse and Apache to overcome the

challenging problem of training data performed on new

project (Rakesh Rana., 2015)

Software defect prediction methods leverage past software

metrics and fault data to identify faulty modules in

upcoming software releases. To meet software quality

assurance goals, quality models serve as valuable tools for

detecting flawed program modules. A software defect is a

coding error that can cause the software to behave

unexpectedly, potentially leading to errors or failures.

These defects, often caused by programming mistakes, can

sometimes result in recoverable faults.

Once such faults are detected, they are sent to

appropriate handler for performing required steps. Defects

prediction will give an opportunity to the team to retest

again the modules or files which are faulty or for which the

probability of defectiveness is more. Focusing more on

defective modules rather than non-defective ones ensures

efficient use of resources, making project maintenance

significantly easier such that, it is beneficial for both

software users as well as project owners. The exact

prediction of where the defects are probable to occur in

code can help directly to test effort, enhance the software

quality and reduce costs. A fault susceptible module is the

one in which the quantity of faults is higher than selected

threshold. Today the greatest challenge in the software

industry is to make any application or software completely

fault free to achieve the best software. As the defected

modules are recognized, it is easier for the experts to focus

only on the development work.

The different types of software metrics like class level,

method level, file level, process level are used to find fault

in the software, before the testing of software at early

stage of software developments life cycle. There are

different methods which are used to find the software

defects, the methods are statistical method, machine

learning method, and expert analysis system (Iker Gondra,

2008). The number of faults in the software causes

problems in system performance and the software

containing many faults delivered to the user. So, there is

need for an automated model which takes less time and

predict the approximate faults existing in the system

1.1 Artificial Neural Network

ANN is a machine learning method based on a model that

can be used for classification. An ANN model is composed

of multiple layers of interconnected units known as neuron.

Training the ANN model with a set of data with known

labels, the ANN model can learn to predict the values of

unknown data. An Artificial neural network has mainly

three layers: an input layer, an output layer, and an

intermediate or hidden layer. The input layer neurons

distribute the input signals to neurons in the hidden

layer(s). Each hidden layer neuron j sums up its input

signals after weighing them with the strengths of the

respective connections from the input layer.

Fig 1. An image showing an Artificial Neural Network

(ANN) with several intermediate and hidden layers

respectively

In Figure 1, If and are the activation and the learned

weight of the previous layer that are connected to a node,

the output (activation) of that node would

be . In this equation, is a learned

constant bias and is a non-linear function e.g. ReLU,

sigmoid.

1.2 Statement of problem

As the dependence on software for managing and

executing daily operations continues to rise, the emphasis

on software quality becomes increasingly crucial. This is

especially relevant as many organizations are now aligning

their business goals with enhancing customer satisfaction

and fostering profitable growth through expanded software

utilization. In this context, even a minor flaw or

inefficiency in the software can lead to substantial

financial losses, potentially in the millions of naira and

damage customer retention, highlighting the critical need

for maintaining strong software quality.

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1189

GSJ© 2024
www.globalscientificjournal.com

Page | 3

2.0 Related work

The common software defect prediction process follows

both statistical and machine learning approach. But

recently, studies have focused more on machine learning

and its distinctive performance as compared to statistical

approach.

According to (Xin Fan, Liangjue Lian, Li Yu, Wei Zheng,

Yun Ge, 2024), it was opined that target projects often lack

sufficient data, which affects the performance of the

transfer learning model and also the presence of

uncorrelated features between projects can lead to a

reduction in the prediction accuracy of the transfer

learning model. A software defect prediction system based

on stable learning (SDP-SL) that combines residual

networks and code visualization techniques was

introduced to address these issues, using code

visualization techniques, this method first converts code

files into code images, which are then used to build a

defect prediction mode. Finally, the performance

evaluation showed that it outperformed other

within-project and cross-project models, therefore, can

effectively enhance defect prediction.

In (Misbah Ali, Tehseen Mazhar, Yasir Arif, Shaha

Alotaibi et al., 2024), an ensemble-based prediction model

for software defects that integrates various classifiers was

developed, the model used a two-step prediction procedure

to identify faulty modules. In the first stage, Random

Forest, Support Vector Machine, Naïve Bayes, and

Artificial Neural Network were the four supervised

machine learning algorithms used. To attain the maximum

accuracy feasible, these algorithms underwent an iterative

parameter optimization. Furthermore, in the second stage,

the predictive accuracy of the individual classifiers was

integrated into a voting ensemble to make the final

predictions. In conclusion, a comparative analysis with

twenty state-of-the-art techniques was carried out to

establish the effectiveness of the proposed framework and

the result demonstrated that a remarkable accuracy was

achieved as compared to the aforementioned

state-of-the-art techniques.

The study in (Bhaskar Marapelli, Anil Carie, and Sardar

Islam, 2023) assessed the existing dataset used for

software prediction models and suggested that there was

problem of noisy attributes and class imbalance. To solve

this, ROS-KPCA-SG model (Random Over

Sampling-Kernel Principal Component Analysis Staked

Generalization Model) model was proposed to solve the

problem. The performance of the model was compared

with individual models with different combinations of

sampling techniques. The results showed the proposed

ROS-KPCA-SG model solves the problems and gave

better performance than other models. For instance, it was

observed that, the AUC-ROC score is between 0.9 and 1

for the ROS-KPCA-SG model on all the datasets, and the

accuracy is near to 90% and above which was a higher

value than other models compared.

(Bahman Arasteh, Sahar Golshan, Shiva Shami, and

Farzad Kiani. Sahand, 2024) Discussed the concept of

reducing the time needed to create software defect

predictor. By using a hybrid method combining the

auto-encoder and the K-means algorithm clustering error

and time was lowered. In order to choose the training

dataset’s effective attributes and subsequently minimize its

size, the auto-encoder algorithm was employed as a

pre-processor and consequently led to a reduction in size

of the datasets. In addition, Tests carried out on the

standard NASA PROMISE datasets show that the

suggested fault predictor has an improved accuracy of

(96%) and precision of (93%), after eliminating the

inefficient elements from the training data set. The

suggested method yields a recall criterion of about 87%.

It is believed that some machine learning algorithms

perform poorly with a small size of dataset, as an example,

Naive Bayes’s algorithm achieved a higher accuracy value

when tested on a larger dataset as compared to a small

dataset. (Awni Hammouri, Mustafa Hammad, Mohammad

Alnabhan, and Fatima Alsarayrah, 2018) Confirmed this

assertion by analyzing three supervised ML algorithms to

predict software defects based on historical data. These

classifiers which are; Naïve Bayes (NB), Decision Tree

(DT) and Artificial Neural Networks (ANNs).ANN,

however had the highest accuracy value, followed by DT

and lastly NB

3.1 Approach to Research

This stage involves acquiring appropriate datasets that will

be used in this research. Therefore, the datasets will be

acquired from http://bug.inf.usi.ch/download.php which is

publicly accessible for use.

The following stage is the feature selection stage which

will be achieved by using Principal Component Analysis

(PCA) in order to extract the relevant features from the

datasets that will be collected in the first stage.

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1190

GSJ© 2024
www.globalscientificjournal.com

http://bug.inf.usi.ch/download.php

Page | 4

In this third stage, classification of the data will take place,

the extracted features will be classified using error back

propagation neural Network learning machine classifier.

Finally, evaluation of the results will be done using

precision, recall, accuracy, and f –score.

3.1.1 Data Collection

Software defect datasets often highlight specific

components or modules within a system that are prone to

defects. These defects can vary in granularity and manifest

at different levels of the software architecture. Such

datasets primarily derive information from software metrics

and developer-related details. Software metrics are

typically classified into three categories: requirements

metrics, product metrics, and process metrics. Examples of

metrics used in software defect analysis include measures

of software engineer productivity, as well as aspects of

software design and maintenance. Some metrics are

directly measurable, while others require analytical

methods. For instance, in object-oriented (OO) software,

design coupling metrics such as Coupling Between Objects

(CBO), Response for a Class (RFC), Message Passing

Coupling (MPC), and Information-Flow-Based Coupling

(ICP) are critical for defect prediction. Additional

important software metrics include Lines of Code (LOC),

McCabe Cyclomatic Complexity (MCC), McCabe

Essential Complexity (MEC), McCabe Module Design

Complexity (MMDC), and Halstead metrics, (McCabee T,

1996). These metrics provide valuable insights into various

aspects of software quality and defect likelihood.

The proposed methodology is applied on Aerospace

Engineering and Engineering Mechanics (AEEM) suite

dataset which is a software data repository collected by [2]

and is comprised of metric and bugged data from four

different open source projects (JDT: Eclipse JDT core,

PDE: Eclipse PDE UI, EQ: Equinox Framework, Luc:

Apache Lucence). Each dataset contains 62 software

metrics including OO, previous defects, and change

metrics. This dataset was created under a distinct setting

compared to the NASA dataset and focuses on defect

prediction at the class level. The Aerospace Engineering

and Engineering Mechanics (AEEM) dataset includes

features such as source code metrics, change metrics,

entropy of source code metrics, and churn of source code

metrics. The datasets could be acquired from

http://bug.inf.usi.ch/download.php which is publicly

accessible for use, additionally, the dataset is free of noise,

and this noise refers to the incorrect software data caused

by some unexpected reasons, such as unintentional errors

in collecting or transferring the values of software features.

The first data collection phase is to find defects from the

repository and collect all valuable pieces of information.

3.2 Feature Selection

 The research applies Principal Component

Analysis (PCA) using a wrapper method for linear

dimensionality reduction, which minimizes the number of

features by identifying principal components (PCs) with the

most significant variance. The goal of PCA is to retain as

much information as possible while reducing

dimensionality. The M is a t-dimensional data set. The n

principal axes G1, G2... Gn here 1 ≤ n ≤ t, are orthonormal

axes onto which the retained variance is maximum in the

projected space (] Peter N. Belhumeur, João P. Hespanha,

and David J. Kriegman, 1996). Commonly G1, G2... Gn

can be given by the n leading eigenvectors of the sample

covariance matrix: These axes correspond to the leading

eigenvectors of the sample covariance matrix C.

C= 3.1

Here , is the mean of samples, is the

number of samples. According to this:

 3.2

Here is the kth largest eigenvalue of U. The n principal

components of a given observation vector are

given as below:

Q= [q1, q2, q3.. qn] = [[]=] 3.3

There, q is the n principal components of x

PCA is favored for its low sensitivity to noise, reduced

memory requirements, elimination of data redundancy

through orthogonal components, and improved processing

time and classification accuracy. Additionally, PCA is an

unsupervised method, making it adaptable for various

applications.

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1191

GSJ© 2024
www.globalscientificjournal.com

http://bug.inf.usi.ch/download.php

Page | 5

3.3 Methods for Updating the Weight Vector

Levenberg Marquardt (LM) Method: The

Levenberg-Marquardt (LM) method iteratively identifies

the minimum of a multivariate function, expressed as the

sum of squares of nonlinear real-valued functions. This

approach is utilized for updating weights during the

learning process. Compared to the gradient descent

method, the LM method offers faster and more stable

execution, as it combines the principles of steepest descent

and Gauss-Newton methods. In LM method, weight vector

𝑊 is updated as follows:

 3.4

where 𝑊𝑘+1 is the updated weight, 𝑊𝑘 is the current

weight, 𝐽 is Jacobian matrix, and 𝜇 is combination

coefficient; that is, when 𝜇 is very small then It functions

as the Gauss-Newton method when 𝜇 is small, and as the

Gradient Descent method when 𝜇 is significantly large.

Jacobian matrix is calculated as follows:

3.3 Cross Validation

 This technique is highly effective for assessing

different combinations of feature selection, dimensionality

reduction, and learning algorithms. A popularly used

validation method is k-fold cross-validation. In this

approach, the original training dataset is split into k

separate subsets, referred to as "folds". One fold is set

aside as the test set, while the remaining k-1 folds are used

to train the model. For example, if k is set to 4 (i.e., 4

folds), three of the subsets would be used for training, and

the fourth would be used for evaluation. Once all four

iterations are complete, the average error rate and standard

deviation are calculated, offering insights into the model's

generalization performance.

3.4 Performance Evaluation Measures

The performance of software defect prediction models is

evaluated using various measures, including;

True Positive (TP): TP represents the count of defective

software instances that have been accurately identified as

defective.

True negative (TN): TN is the number of clean software

instances that are correctly classified as clean.

False Positive (FP): Refers to the number of

non-defective software instances incorrectly classified as

defective.

False Negative (FN): Refers to the number of defective

software instances incorrectly classified as non-defective.

One of the simplest and most commonly used metrics for

assessing the performance of predictive models is

classification accuracy, also known as the correct

classification rate. It measures the proportion of correctly

classified instances relative to the total number of

instances. Another important metric is precision,

calculated as the ratio of correctly classified defective

instances (TP) to the total instances classified as defective

(TP + FP). Additionally, recall measures the proportion of

correctly identified defective instances (TP) to the total

defective instances (TP + FN). The F-score, which is the

harmonic mean of precision and recall, is widely

employed in literatures also as an evaluation metric.

3.5

Accuracy takes into account both true positives and true

negatives across all instances. In other words, it represents

the proportion of instances that are correctly classified

 3.6

It is the ratio of the number of instances correctly identified

as defective (TP) to the total number of instances classified

as defective (TP + FP).

 3.17

It is the proportion of instances correctly identified as

defective (TP) relative to the total number of faulty

instances (TP + FN)

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1192

GSJ© 2024
www.globalscientificjournal.com

Page | 6

 3.15

The harmonic mean of precision and recall

3.5 Evaluation of Classification Quality

 In this research, we adopted binary classification, which

means that we predict whether a component/file has a

defect or not. Table 1 below presents the confusion matrix,

which is commonly used to evaluate the performance of

binary classification models.

Table 1. Confusion matrix

Defects are observed

TRUE
FALSE

Predicted

Condition

Positive

True

Positive

False

Positive

Negative False

Negative

True

Negative

Figure 2 Architecture of the model

3.6 Error Back-Propagation

Error back-propagation learning involves two distinct

phases: a forward pass and a backward pass. In the

forward pass, the input is fed into the neural network and

propagated through each layer, while keeping the network

weights unchanged. During this phase, the network

produces an output. In the backward pass, the error is

calculated as the difference between the desired output and

the actual output from the network. This error is then

propagated backward through the network to update and

adjust the weights based on the error values. This

adjustment follows a systematic process governed by a

learning rule. The training process starts with randomly

initialized weights, and the objective is to fine-tune these

weights to minimize the error. The adjustment process

continues iteratively until the performance of the network

reaches an acceptable level. The activation function used

in the neurons of artificial neural networks that employ the

back-propagation algorithm is typically a weighted sum of

the inputs Xi, where each input is multiplied by its

corresponding weight Wji. This process ensures the gradual

optimization of the network to improve predictive

accuracy.

4.0 Result and Discussion

The experiment was conducted by extracting relevant

features from the datasets, as outlined in the methodology,

using principal component analysis. This step significantly

impacts system error prediction, as iterative feature

additions and modifications in software tend to increase

system complexity. However, the machine learning

algorithm used to build the software prediction system in

this research is Artificial Neural Network (Levenberg

Marquardt algorithm) classifier and the performance

evaluation were determined. MATLAB (R2018a) was used

as the development environment using statistical toolkit.

Moreover, the “weighted-ent” dataset has 22

software metrics with varying amount of instances. These

is evident in the GUI representation of each data set as

shown in fig 3, 4, 5 and 6.

Fig 3 Distribution of eclipse JDT CORE showing 22 features

and 9 instances

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1193

GSJ© 2024
www.globalscientificjournal.com

Page | 7

Fig. 4 The distribution of Eclipse PDE UI with a similar

number of 22 features and 25 instances

Fig. 5 The distribution of Equinox framework with 22

features and 12 instances

 Fig. 6 The distribution of LUCENE with a similar

number of 22 features and 9 instances

In order to eliminate the possibility of over fitting, feature

selection was employed. PCA was used to extract the

features that most affect the output which is the number of

bugs in this case.

Four times 4-fold cross validation was performed

when evaluating the prediction system. The datasets were

separated into four equal parts. Three parts out of four are

used as training data and the feature selection process

while the forth part is used for testing. In order for every

instances of the datasets to be used as testing and training,

this process was repeated four times. Cross-validation was

used due to the limited amount of data, offering an

advantage over the holdout method. In the holdout method,

the dataset is divided into two parts: one is used for

training, and the other for testing. In this research, the

solution to the bias idea was adopted using cross

validation where all the instances were used one time for

testing and training. This simply means that, instead of

conducting four folds, a total of 16 folds is generated and

the error estimate is therefore more reliable.

Figure 7 Architecture of Error back propagation

neural network

Fig. 7 shows that the architecture used for error-back

propagation algorithm with 14 neurons (i.e. features of

dataset) in input layer. Hidden layer uses 10 neurons and 5

neurons in its output layer and eventual output

respectively.

4.1 Confusion Matrix

Confusion matrix also referred to as an error matrix which

reports the number of True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN) where

TP is the correct positive prediction, FP is the incorrect

positive prediction, TN is the correct negative prediction

and FN is the incorrect negative prediction. Having

conducted the experiments, the confusion matrix where

the true conditions are the actual results, that is the original

result from the file and predicted condition are the result

from the predictors which are presented in Table 2.

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1194

GSJ© 2024
www.globalscientificjournal.com

Page | 8

Fig. 8 Training and Validation for Eclipse JDT Core

Fig. 9 Training and Validation for Eclipse PDE UI

 Fig. 10 Training and Validation for Equinox

Fig. 11 Training and Validation for Lucene

4.2 System Evaluation

The system was measured in terms of accuracy, precision,

recall and f-score. As shown in Table 1, accuracy is

described as the ratio of all correctly classified instances.

Precision measures the fraction of faulty modules that are

actually faulty. It is a measure of how good the prediction

system is at identifying actual faulty files. Recall measures

the percentage of fault-prone modules that are classified

correctly.

 According to the conducted experiments the

percentage of the True Positive Rate (TPR) and True

Negative Rate (TNR) of the datasets used in this research

work; ECLIPSE JDT CORE, ECLIPSE PDE UI,

EQUINOX FRAMEWORK, and LUCENE are (79.31%

and 88.24%), (45.45% and 87.97%), (65.22% and 73.81%)

and (50.00% and 93.85%) respectively. The training and

validation for the datasets ECLIPSE JDT CORE,

ECLIPSE PDE UI, EQUINOX FRAMEWORK, and

LUCENE was conducted. However, the best validation

performance is 0.52482 at epoch 5, 0.21032 at epoch 5,

0.67527 at epoch 9 and 0.01356 at epoch 10 respectively.

Table 1 System Results of the Accuracy, Precision, Recall,

and F-Score

Name

Acc

urac

y

Prec

isio

n

Re

call

TP

R

TN

R

Bala

nced

Acc

urac

y

F1

Sco

re

ECLIP

SE JDT

CORE

86.9

3%

53.4

9%

79.

31

%

79.

31

%

88.

24

%

83.7

8%

63.

89

%

ECLIP

SE

PDE UI

83.2

8%

31.9

1%

45.

45

%

45.

45

%

87.

97

%

66.7

1%

37.

50

%

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1195

GSJ© 2024
www.globalscientificjournal.com

Page | 9

EQUIN

OX

FRAM

EWOR

K

70.7

7%

57.6

9%

65.

22

%

65.

22

%

73.

81

%

69.5

1%

61.

22

%

LUCE

NE 91.3

0%

33.3

3%

50.

00

%

50.

00

%

93.

85

%

71.9

3%

40.

00

%

Table 2 Confusion matrix results

ECLIPSE JDT CORE

 True Conditions

Predicted

Condition

 True False

True 23 (TP) 20 (FP)

False 6 (FN) 150 (TN)

ECLIPSE PDE UI

 True Conditions

Predicted

Condition

 True False

True 15 32

False 18 234

EQUINOX FRAMEWORK

 True Conditions

Predicted

Condition

 True False

True 15 11

False 18 31

LUCENE

 True Conditions

Predicted

Condition

 True False

True 4 8

False 4 122

4.4 Comparison to Related Study

 In Table 3, the implemented result of the proposed model

is being illustrated and compared with those of classifiers

such as in Rizwan et al. (2017) which made use of similar

performance metrics. That is accuracy, f1-score, precision.

It can be seen that the proposed model performed better

than the model been compared with. It is further compared

to the average accuracy result of the related study. Rizwan

et al. (2017) proposed a system to predict defects specific

to concurrent programs by combining both static and

dynamic program metrics.

Table 3 Comparison of Rizwan’s model against the

Developed Model

Name

Accurac

y

Precisio

n Recall

F-

Score

Rando

m

Forest 18.70% 59.74%

37.16

%

43.68

%

Naïve

Bayes 17.10% 47.04%

45.54

%

43.62

%

J48 43.58 49.38%

46.70

%

12.20

%

Propose

d

Model 83.07% 44.10%

59.99

%

50.65

%

0

20

40

60

80

100

Accuracy Precision Recall F-score

Random forest Naïve Bayes J48 Proposed model

Figure 12 Comparison of Rizwan’s model against the

Developed Model

5.0 Summary and Conclusion

This research focused primarily on prediction of software

error or bugs on one the most well-known machine

learning algorithms that are used to predict software

defects. The performances of the model algorithms was

evaluated using classification accuracy, precision, recall

and F-score. The cross-validation strategy was employed

to deal with the bias issue. The outcomes of the conducted

experiment showed that the proposed model performed

well in terms of accuracy. However, there is room for

more extensive research and study in this domain because,

software development is ever evolving with new

approaches and frameworks.so, and this may give rise to

new errors in the future and thus a need for continuous

optimization.

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1196

GSJ© 2024
www.globalscientificjournal.com

Page | 10

6.0 Acknowledgment

Special thanks to God almighty for the inspiration of this

project and to colleagues and friends who supported us

physically and emotionally when needed.

References

Awni Hammouri, Mustafa Hammad, Mohammad

Alnabhan, and Fatima Alsarayrah Software bug prediction

using machine learning approach. International journal of

advanced computer science and applications, 9(2), 2018.

Bacchelli A., D’Ambros M., and Lanza M. (2010) Are

popular classes more defect prone? In Proceedings of the

13th International Conference on Fundamental

Approaches to Software Engineering, FASE’10, pages 59–

73.

Bahman Arasteh, Sahar Golshan, Shiva Shami, and Farzad

Kiani. Sahand: A software fault-prediction method using

auto-encoder neural network and k-means algorithm.

Journal of Electronic Testing, pages 1–15, 04 2024.

Bhaskar Marapelli, Anil Carie, and Sardar Islam. Software

Defect Prediction Using ROS-KPCA Stacked

Generalization Model, pages 587–597. 04 2023.

Iker Gondra. Applying machine learning to software

fault-proneness prediction. Journal of Systems and

Software, 81(2):186–195, 2008. Model-Based Software

Testing.

McCabe T. and C. Butler, “Design Complexity

Measurement and Testing,” Communi-

cations of the ACM, December 1989

Misbah Ali, Tehseen Mazhar, Yasir Arif, Shaha Alotaibi,

Yazeed Ghadi, Tariq Shahzad, Muhammad Khan, and

Habib Hamam. Software defect prediction using an

intelligent ensemble-based model. IEEE Access, PP: 1–1,

01 2024.

Peter N. Belhumeur, João P. Hespanha, and David J.

Kriegman. Eigenfaces vs. fisherfaces: Recognition using

class specific linear projection. In Bernard Buxton and

Roberto Cipolla, editors, Computer Vision — ECCV ’96,

pages 43–58, Berlin, Heidelberg, 1996. Springer Berlin

Heidelberg.

Rakesh Rana. Software Defect Prediction Techniques in

Automotive Domain: Evaluation, Selection and Adoption.

PhD thesis, 02 2015.

Rizwan, Syed & Wang, Tiantian & Xiaohong, Su &

Shaikh, Salahuddin. (2017). Empirical Study on Software

Bug Prediction. 55-59. 10.1145/3178212.3178221.

Xin Fan, Liangjue Lian, Li Yu, Wei Zheng, Yun Ge, et al.

Software defect prediction method based on stable

learning. Computers, Materials & Continua, 78(1), 2024.

Author’s brief profile

Marafa .S. I (B.Tech) is currently a master’s student at the

department of software engineering, Nankai University,

Tianjin China. His research areas include fault tolerance,

Machine Learning, Optimization and software engineering.

He can be reached by phone on (+86)-13752034504 and

via email-marafasalman@gmail.com.

Amadu W.B (B.Sc.) is currently a master’s student at the

department of software engineering, Nankai University,

Tianjin China. His research areas includes human

computer interaction and software engineering. He can be

reached by phone on (+86)-15922144231 and via

email-codewithbawurie@gmail.com

Dauda .F.A (M.Tech) is an engineer at the Nigerian

Television Authority, His research focus spans along

machine learning, cyber security and optimization of

telecommunication networks. He can be reached via

(+234)-8085818815 and by email-fard4trust@gmail.com

GSJ: Volume 12, Issue 11, November 2024
ISSN 2320-9186 1197

GSJ© 2024
www.globalscientificjournal.com

mailto:mailtomailtomarafasalman@gmail.com
mailto:codewithbawurie@gmail.com
mailto:fard4trust@gmail.com

