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Abstract

This study employs Bayesian Hierarchical Modeling (BHM) to analyze COVID-

19 transmission dynamics across Liberia’s counties. It addresses the shortfalls of

tradition in epidemiological models such as the Susceptible-Infectious-Recovered

(SIR) model. This study integrates spatial heterogeneity and probabilistic frame-

work by inputting COVID-19 cases, healthcare capacity, and mobility interven-

tions at the county level into the estimation of critical epidemiological parameters.

Statistical methods such as Poisson regression, Generalized Linear Mixed Models

(GLMM), and BHM are employed to assess the effect of interventions: partial and

full lockdowns, curfews, and border closures. The findings indicated that partial

lockdowns and border closures have large positive correlations with COVID-19 case

counts while curfews and full lockdowns have little effect. The study shows a need

for localized interventions and further highlights how findings serve as pointers for

improving some regional characteristics of public health responses.1

*Contact: +231770796874; dcgray1975@gmail.com
1COVID-19 Cases, Bayesian Hierarchical, Poisson Regression, General Linear Mixed Model
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1 Introduction

The coronavirus disease 2019 (COVID-19), which emerged from the severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2) and was first identified in December 2019 in

Wuhan, China, quickly transformed into a global health crisis (Salako et al., 2024). The

World Health Organization (WHO) officially declared COVID-19 a pandemic on March

11, 2020; this marked a pivotal moment in the ongoing battle against a disease that has

since had a profound impact on public health, economies and societies around the world

(Maiti et al., 2021). For example, in Liberia, the initial case was confirmed on March

16, 2020, in Margibi County, indicating the pandemic’s arrival in the nation (Wikipedia,

2024). By December 2023, Liberia had reported a cumulative total of 8,161 confirmed

cases and 295 deaths, demonstrating the considerable toll the pandemic has exacted on

the country’s health systems and communities (WHO, 2023). However, the response to

these challenges continues to evolve, as public health measures are adjusted and new

strategies are implemented.

Comprehending the transmission dynamics of COVID-19 is essential for developing

effective public health interventions (Nakhriry and Aarthy, 2023). Traditional epidemi-

ological models such as the Susceptible-Infectious-Recovered (SIR) model have proven

invaluable for estimating crucial parameters, including the basic reproduction number

(R0), and for predicting the trajectory of infectious disease outbreaks (Singh et al., 2024;

Ajmal et al., 2024). However, these models frequently depend on oversimplified assump-

tions, particularly regarding homogeneous mixing within populations. This may not

adequately reflect the complexity and heterogeneity present in real-world populations.

Factors like county variations in Liberia’s population density, healthcare access, and so-

cial behaviors significantly impact disease transmission dynamics, which pose challenges

to the applicability of traditional models in varied contexts, such as Liberia.

To overcome these limitations, this study adopts a Bayesian Hierarchical Model

(BHM) framework to analyze COVID-19 transmission across Liberia’s counties. The

BHM approach facilitates the incorporation of spatial heterogeneity and provides a prob-

abilistic framework for estimating key epidemiological parameters. This model accounts

for regional differences in population characteristics, healthcare policy, and other context-

specific factors, enabling a more nuanced understanding of the pandemic’s spread. By

leveraging this advanced modeling framework, the study aims to generate insights into
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county-level variations in COVID-19 transmission dynamics and improve the precision of

epidemic forecasts.

The findings of this research underscore the importance of tailoring public health

strategies to the unique characteristics of each county. By highlighting the role of lo-

calized interventions in controlling the spread of COVID-19, this study contributes to

the development of targeted and efficient public health responses. Such strategies are

essential for enhancing Liberia’s preparedness and resilience against current and future

infectious disease outbreaks.

The field of infectious disease dynamics boasts a rich history, with numerous models

developed to analyze and predict the spread of diseases (Heesterbeek et al., 2015; Diek-

mann et al., 2013). According to Li (2018), the Susceptible-Infectious-Recovered (SIR)

model remains one of the foundational frameworks in epidemiology, enabling the estima-

tion of the basic reproduction number (R0) and providing insights into the progression

of infectious diseases within populations. However, the SIR model’s assumption of ho-

mogeneous mixing has been critiqued for oversimplifying the complex interplay of social

and environmental factors that influence disease transmission.

Recent advances in epidemiological modeling have addressed these limitations by in-

corporating more realistic assumptions about population structure and behavior (Caswell

and John, 2018; Sutherland, 1996; Langat and Koima, 2017). Bayesian Hierarchical

Models (BHMs) have emerged as a robust tool for studying the spread of infectious dis-

eases, particularly in contexts characterized by significant regional heterogeneity. Unlike

traditional compartmental models, BHMs incorporate multiple levels of data hierarchy,

allowing researchers to account for variations in disease transmission across regions or

subpopulations (Lawson, 2021). The application of BHMs in epidemiology has been

extensively documented, with successful implementations in modeling diseases such as

Ebola, COVID-19, and Zika virus (Powell et al., 2020). These models have provided

valuable insights into the factors driving regional differences in disease transmission and

have underscored the importance of tailoring public health interventions to specific local

contexts.

In the case of COVID-19, BHMs are particularly relevant due to the disease’s spo-

radic outbreaks and the considerable variability in transmission dynamics across regions.

Studies indicate that factors such as population density, healthcare infrastructure, and
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mobility patterns significantly influence disease spread, making it essential to adopt mod-

eling approaches capable of capturing these complexities. This study builds upon existing

literature by applying a BHM to analyze the spread of COVID-19, aiming to provide more

precise estimates of transmission dynamics and inform targeted public health strategies.

2 Data and Methods

2.1 Data

Data collection. The data was downloaded from the DHIS2 data platform. The dataset

comprises detailed records of confirmed COVID-19 cases across different counties in

Liberia over a defined period (from 1st January 2020 to 31th of December 2020), a total

cases of COVID-19 have been recorded from 14 counties in Liberia: Capa Mount, Bong,

Gbarpolu, Grand Bassa, Grand Gedeh, Grand Kru, Lofa, Margibi, Maryland, Monteser-

rado, Nimba, River Cess, River Gee and Sinoe. Details of key variables utilized in the

analysis are provided and summary in Table 1.

Table 1: Key Variables Utilized in the Analysis

Variables Description Sources

County Each county in Liberia is included in the
study

DHIS2

Total Covid Cases Number of cases per county DHIS2
Partial lockdown due
to Covid-19

Partial lockdown due to Covid-19 DHIS2

Full lockdown due to
Covid-19

Full lockdown due to Covid-19 DHIS2

Curfew due to Covid-
19

Curfew due to Covid-19 DHIS2

Closing of border due
to Covid-19

Closing of border due to Covid-19 DHIS2

Closing of airspace
due to Covid-19

Closing of airspace due to Covid-19 DHIS2

Population Density The total population per county for 2020 DHIS2
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3 Methods

3.1 Poisson Regression Model

The Poisson regression model is used to model count data and assuming that the response

variable Yi follows a Poisson distribution, where logarithm of its expected variable is a

linear function of the explanatory variables.

3.2 Assumptions

� Yi ∼ Poisson(pi), where pi > 0 is the rate parameter for observation i , linked to

the covariances.

� The logarithm of the rate parameter pi is modeled as a linear function.

3.3 Model Specification

Let Yi be the count of COVID-19 cases for observation i. The Poisson regression model

is formulated as

log(pi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βnXin, (1)

or equivalently:

pi = exp (β0 + β1Xi1 + β2Xi2 + · · ·+ βnXin) . (2)

Where Xi1, Xi2, · · · , Xin are the covariances (Population Density, partial lockdown due

to Covid-19, full lockdown due to Covid-19, curfew due to Covid-19,closing of border due

to Covid-19, closing of airspace due to Covid-19 ), β0, β1, β2, · · · , βn are the coefficients

to be estimated.

3.4 Likelihood Function

The likelihood function for n observations for the Poisson model is:

L(β/Yi) =
n∏

i=1

pYi
i e−pi

Yi!
.
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Taking the log-likelihood:

ℓ(β | Yi) =
n∑

i=1

[Yi log(pi)− pi − log(Yi!)]

substitute pi = exp (β0 +
∑n

i=1 βnXin) , and concluded that

ℓ(β | Yi) =
n∑

i=1

[
Yi

(
β0 +

n∑
i=1

βnXin

)
− exp

(
β0 +

n∑
i=1

βnXin

)
− log(Yi!)

]
(3)

Maximizing the log-likelihood function provides the maximum likelihood estimates (MLE)

of the coefficients β.

3.5 Generalized Linear Mixed Model (GLMM)

The GLMM extends the Poisson regression by including random effect across counties

in Liberia. Modeling the number of COVID-19 cases across counties, where counties are

treated as random effects and predictors include population density,partial lockdown due

to Covid-19, full lockdown due to Covid-19, curfew due to Covid-19,closing of border due

to Covid-19, and closing of airspace due to Covid-19.

Let Yij denote the count for COVID-19 cases for i-th observation in the j-th county,

assuming that

Yij ∼ Poisson(pij). (4)

Where the expected rate pij is linked to the predictors and random effects via a log link

function:

log(pij) = β0 +
n∑

i=1

βnXin + υj. (5)

The random effects υj is assumed to follow a norm distribution

υj ∼ N (0, σ2
υ) (6)

The margin likelihood for GLMM is obtained by integrating out the random effects:

L(β, συj |Y ) =
m∏
j=1

∫ [ n∏
i=1

pYij
ij e−pij

Yij!

]
1√
2πσ2

υj

e−υjdυj
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Due to the complexity of this integral, numerical methods or approximation tech-

niques, such as the Laplace approximation or Gauss-Hermite quadrature, are commonly

employed to maximize the likelihood and estimate the parameters β and υj, (e.g., Salako,

et. al., 2024 ).

3.6 Bayesian Hierarchical Model

The Bayesian Hierarchical Model (BHM) is similar to the GLMM but uses a fully Bayesian

approach. It includes prior distributions for both fixed and random effects to estimate

parameters. The same model specifications used in GLMM, as described in equations

(4), (5), and (6), are applied in BHM, with the added incorporation of prior distributions

for the parameters.

βn ∼ Normal(0, σ2
β), n = 0, 1, 2, · · · , N

The variance of the random effects σ2
υ.

σ2
υ ∼ InverseGamma(a, b).

Similar approaches have been discussed in the works of Carlin and Polson (1992), Lee

(1989), and Lehmann (1983).

3.6.1 Posterior Distribution

The joint posterior distribution combines the likelihood and the prior distribution is

expressed as

Pr(β, υ, σ2
υ|Y ) ∝ Pr(Y |β, υ) · Pr(β) · Pr(υ|σ2

υ) · Pr(σ2
υ)

This posterior distribution is typically estimated using Markov Chain Monte Carlo

(MCMC) methods, such as Gibbs sampling or Hamiltonian Monte Carlo, as implemented

in tools like MCMCglmm, ( Damien,et al., 1996 and Gelman, et. al., 2021). Posterior

samples generated through MCMC can be used to calculate posterior means, credible

intervals, and make probabilistic statements about the parameters (e.g., determining the

probability that a parameter is positive).
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3.7 Estimation of Parameters and Model Diagnostics

3.7.1 Estimation of Parameters

The methods for estimating parameters differ across models such as Poisson regression,

GLMM and BHM. For Poisson regression model, parameters β0, β1, · · · , βn are estimated

using Maximum Likelihood Estimation (MLE) by maximizing the log-likelihood function:

β̂ = argmax
β

ℓ(β | Yi).

Where

ℓ(β | Yi) =
n∑

i=1

[
Yi

(
β0 +

n∑
i=1

βnXin

)
− exp

(
β0 +

n∑
i=1

βnXin

)
− log(Yi!)

]
.

In GLMM, parameter estimation accounts for both fixed effects (β) and random effects

(υ). This process typically employs Restricted Maximum Likelihood (REML) or Maxi-

mum Likelihood (ML) methods, which maximize the likelihood function by integrating

over the random effects:

L(β, συj |Y ) =
m∏
j=1

∫ [ n∏
i=1

pYij
ij e−pij

Yij!

]
1√
2πσ2

υj

e−υjdυj

Several numerical techniques can be applied to evaluate or approximate this integra-

tion, for the purpose of this study used either Laplace approximation or Gauss-Hermite

quadrature.

For the BHM, estimation parameters involves deriving the posterior distribution of

the parameters based on the observed data and prior distributions. Using Baye theorem,

the Posterior distribution is expressed as

Pr(β, υ, σ2
υ|Y ) ∝ Pr(Y |β, υ) · Pr(β) · Pr(υ|σ2

υ) · Pr(σ2
υ)

To generate samples from the posterior distribution, the study utilizes MCMC methods,

including Gibbs sampling or Hamiltonian Monte Carlo. These samples are subsequently

used to compute posterior means, credible intervals, and other summary statistics.
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3.7.2 Model Diagnostics

Assessing the fit and validity of the models, model diagnostics can be used to determine

whether the Poisson regression, GLMM and HBM are best fitted. Various diagnostic

methods can be applied to assess the performance of each model.

4 Results

4.1 Poisson Regression Model Application

Table 2: Poisson Regression Model Summary

Parameter Value

Dependent Variable Covid-19 Cases
Number of Observations 180
Model GLM
Degrees of Freedom Residu-
als

177

Model Family Poisson
Link Function Log
Scale 1.0000
Method IRLS
Log-Likelihood -3648.5
Deviance 7020.1
Pearson Chi2 2.25e+04
Number of Iterations 6
Pseudo R-squared (CS) 0.9990
Covariance Type nonrobust

Regression Coefficients

Parameter Estimate Std. Err. Z Value P > |Z| 2.5% 97.5%

Partial Lockdown 1.3562 0.060 22.710 0.000 1.239 1.473
Full Lockdown 6.19e-16 4.76e-17 13.017 0.000 5.26e-16 7.12e-16
Curfew 0.0000 0.0000 nan nan 0.000 0.000
Closing of Border 1.7116 0.039 43.938 0.000 1.635 1.788
Closing of Airspace 0.6431 0.061 10.537 0.000 0.523 0.763

Table-1 shows the result of the Poisson regression model, which estimates the rela-

tionship between several predictors (lockdown measures) and the number of COVID-19

cases, assuming a log-linear relationship The findings imply that border closures and
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partial lockdowns had the strongest correlations with the anticipated number of COVID-

19 cases. When all other conditions are held constant, a partial lockdown is associ-

ated to a 3.88 times higher rate of COVID-19 cases than when there is no lockdown

(exp(1.3562) ≈ 3.88). Similarly, closing borders have the strong positive correlation

with COVID-19 cases, that is closing borders is associated with a 5.54 times increase in

COVID-19 cases, indicating a strong positive association (exp(1.7116) ≈ 5.54). These

effects are robust and precise, as evidenced by the tight confidence intervals and high

statistical significance (p < 0.001) of both predictors.

Another notable effect is closing airspace, which increases the estimated number of

COVID-19 cases by 90% (exp(0.6431) ≈ 1.90), while full lockdown has an extremely

small coefficient (6.192× 1016), indicating no practical impact despite being statistically

significant. The curfew variable is excluded from the model, likely due to multicollinearity

or lack of variability. The model fit is exceptionally strong, with a Pseudo R-squared of

0.9990, suggesting that the predictors almost completely explain the variance in COVID-

19 cases. The high z-values and low p-values for significant variables further support the

strength of the relationships.

In conclusion, the model shows that while complete lockdowns and curfews have little

to no effect on the rate of COVID-19 cases in this dataset, partial lockdowns, border

closures, and airspace closures have a considerable impact. These findings imply that

tailored interventions, like border closures and partial lockdowns, may have a greater

effect on controlling COVID-19 case counts than more comprehensive or stringent ones,

such complete lockdowns.
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4.2 GLMM Fixed Effects and Random Effects

Table 3: GLMM Summary for COVID-19 Cases

Predictor Estimate SE z p 95% CI Lower 95% CI Upper

Intercept 0.8899 0.393 2.265 0.024 0.120 1.660
Population Density -6.52×10−6 3.81×10−6 -1.712 0.087 -1.4×10−5 9.45×10−7

Partial Lockdown 1.2697 0.484 2.622 0.009 0.321 2.219
Full Lockdown 6.95×10−17 8.28×10−17 0.840 0.401 -9.27×10−17 2.32×10−16

Curfew 0.0000 0.000 NaN NaN 0.000 0.000
Closing of Border 0.8899 0.393 2.265 0.024 0.120 1.660
Closing of Airspace 0.6613 0.369 1.793 0.073 -0.062 1.384

Note. Estimate = Coefficient; SE = Standard Error; CI = Confidence Interval. Results
are based on Poisson regression using Generalized Estimating Equations (GEE).

Table 4: Model Diagnostics for COVID-19 Cases

Diagnostic Measure Value

Skewness 6.0555
Kurtosis 44.3135
Centered Skewness 3.5306
Centered Kurtosis 38.7134
Number of Observations 180
Number of Clusters (Counties) 14
Min Cluster Size 12
Max Cluster Size 12
Mean Cluster Size 12.0
Number of Iterations 2

Table 3 presents estimate from the GLMM, including fixed effects for various COVID-

19 interventions and population density, as well as random effects accounting for county-

level variability. The fixed effects suggest that partial lockdown and border closures have

significant positive associations with COVID-19 cases, while full lockdowns and curfews

show no significant impact. Population density does not exhibit a statistically signifi-

cant effect on case counts. The random effects capture the differences among counties,

highlighting the variability in how regions respond to interventions.

Table 4 presents the model diagnostics for the GLMM, providing insights into the dis-

tribution and structure of the data. The high skewness (6.0555) and kurtosis (44.3135)

values indicate a highly skewed distribution with extreme values, suggesting the presence
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of potential outliers or overdispersion in the data. The centered skewness and kurtosis

values further confirm deviations from normality, emphasizing the need for careful inter-

pretation of the model results. The clustering structure consists of 14 counties, each with

an equal number of 12 observations, ensuring balanced representation across regions. The

model achieved convergence after two iterations, indicating computational efficiency, but

further examination may be required to ensure robustness and accuracy

4.3 Analysis of Bayesian Hierarchical Model

Table 5: Summary of Bayesian Hierarchical MCMC Results for Fixed and Random Effects

Effect Covariate Posterior Mean L 95% CI U 95% CI ESS pMCMC

Fixed Effects
Intercept 0.018 -0.075 0.057 876 –
Partial Lockdown 0.004 -1.9916 1.9380 6206 0.5128
Full Lockdown 0.001 -1.9673 1.9600 5950 0.5108
Curfew 0.017 -1.9474 2.0467 6815 0.5018
Closing of Border -0.004 -2.0857 1.9634 5346 0.5015
Closing of Airspace 0.010 -1.9454 1.9318 5576 0.4878

Random Effects (Counties)
Capa Mount -0.134 -0.7208 0.3673 1519 0.2597
Bong -0.199 -0.6709 0.4300 1634 0.3060
Gbarpolu -0.109 -0.6709 0.4300 1654 0.2290
Grand Bassa -0.190 -0.6467 0.4415 1736 0.3420
Grand Gedeh -0.185 -0.7317 0.3437 1602 0.2462
Grand Kru -0.182 -0.7277 0.3602 1647 0.2435
Lofa -0.138 -0.7222 0.3713 1705 0.2420
Margibi -0.060 -0.6870 0.3964 1608 0.3095
Maryland -0.154 -0.6102 0.4954 1428 0.4093
Montserrado 2.310 -0.6893 0.4019 1599 0.2732
Nimba -0.092 1.7636 2.9231 1726 1.0000
River Cess -0.203 -0.6415 0.4659 1700 0.3643
River Gee -0.150 -0.7306 0.3614 1609 0.2225
Sinoe -0.208 -0.6895 0.4106 1625 0.2853

The absolute impact of national COVID-19 measures estimated with the Bayesian Hi-

erarchical MCMC model reflects similar insights as the impact of the GLMM. Taking

the fixed effects into close account, the model suggests very high uncertainty regarding

the effectiveness of partial lockdowns, full lockdowns, curfew and closing of borders and

airspace. The posterior p-values of an indicators, such as pMCMC > 0 meaning there is

strong evidence that COVID-19 cases were significantly higher or pMCMC < 0 meaning

there is strong evidence that COVID-19 cases were significantly lower.

Table 4 shows the effect of the partial and full lockdown has posterior means close
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to zero and p-value of MCMC around 51%, indicating no significant effect in either

direction. These results imply that the implementation of lockdowns may not have had

a clear or substantial impact on COVID−19 case numbers. With similar p-value of

MCMC equivalent to 50% of curfew and border closure show a lack of clear effectiveness,

whereas closing of airspace, p-value of MCMC is round 49% suggesting weak evidence of

a potential negative effect. There is no strong statistical evidence to suggest that any of

these interventions had a significant effect on reducing COVID−19 cases, likely due to

regional variations and other unaccounted factors.

The random effects capture county-level variations, and the pMCMC values provide

insight into whether counties have significantly higher or lower COVID−19 case counts

compared to the overall average.

From Table 4 shows that counties such as Capa Mount (pMCMC < 0 = 0.7402)

and Gbarpolu (pMCMC < 0 = 0.7710) show strong evidence of having lower case

numbers than the national average. These findings may be attributed to regional dif-

ferences in population density, healthcare capacity, or adherence to containment mea-

sures. Whereas, Montserrado (pMCMC < 0 = 0.7268) suggests evidence of higher

cases compared to other counties. Montserrado, being a densely populated region, might

have contributed to higher COVID-19 case rates, and Nimba County stands out with

a pMCMC(> 0) = 1.000, meaning there is strong evidence that COVID-19 cases were

significantly higher compared to other counties. This could be due to regional outbreaks

or reporting difference.
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Figure 1: Effects of Covariates on COVID-19 Cases.

Figure 1 presents an illustration of the relationship between actual COVID-19 cases

and predictions in the first subplot where a strong positive correlation is noticed the model

does a good job of depicting a trend. Yet, replicable variation may indicate random noise,

or the effects of other unidentified intervening variables ignored by the model. The second

subplot studies the effects of population density on the number of predicted cases, which

displays a surprising relationship whereby increased population density corresponds with

fewer predicted cases. This illogical pattern could indicate that the higher population

density areas had better healthcare facilities or developed control measures that reduced

the spread of COVID-19.

The analysis performed on the third plot (bottom left) refers to the effect of ”partial

lockdown” on predicted COVID cases, identifying a sharp decline when the severity

is increased. This suggests that partial lockdowns worked very well at reducing case

numbers, although the effect diminishes with the increased stringency of restrictions.

Lastly, the fourth plot (bottom right) shows a comparison among full lockdown, curfew,

and airspace closure relative to mobility index levels for modeled cases. A general pattern

was observed for curfew and airspace closure, but full lockdown had larger variation,

signifying that although they may be effective, the effects could depend on factors beyond
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the levels of restriction, such as compliance and enforcement. Overall, the plots suggest

that different types of interventions vary widely in effectiveness for COVID-19 case control

and underscore the need for targeted policy measures.

Figure 2: Trace and density plot for the covariates on COVID-19 cases prediction.

Figure 2 illustrates the trace plots (left) for all covariates-including the intercept,

partial lockdown, full lockdown, curfew, closing of borders, and closing of airspace with
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evidence of good mixing and stationarity, indicating that the MCMC chains have con-

verged and are effectively exploring the posterior distributions with minimal autocorre-

lation. Density plots (right) are approximately normal around their means, indicating

reasonable parameter estimation but of generally varying uncertainties. Spread around

density point indicates uncertainty associated, where narrower distribution translates to

higher precision for parameter estimation. These plots in general denote stable and reli-

able posterior estimates for the fixed effects given by the accepted Bayesian Hierarchical

model.

Figure 3: Posterior Distribution of Model parameters.

Figure 3 illustrates the posterior distribution plots for the intercept and a variety

of COVID-19 interventions (partial lockdown, full lockdown, curfew, closing of borders,

and closing of airspace) suggest that all parameter estimates are centered around zero

with symmetrical bell-shaped distributions and represent uncertainty in their effects.

The 95% CIs, delineated by the vertical black dotted lines, all enclose zero, implying
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that none of the interventions have any statistically significant effect at the 95%-level

of confidence. The relatively wide spread of the distribution shows also a considerable

amount of uncertainty on the estimates of the parameters.

5 Discussion

The paper provides an in-depth analysis of COVID-19 transmission dynamics in Liberia,

which uses a BHM model framework. Traditional epidemiological models such as the

SIR model are helpful but fall short of describing the actual behavioral spread of dis-

eases, given that models are based on very simplified assumptions regarding population

homogeneity. Conversely, such spatial heterogeneity caused by the BHM model used pro-

vides greater insight into how different factors, including population density, healthcare

infrastructure, and social behaviors, affect disease transmission among various counties

in Liberia.

The discussion highlights the effectiveness of various public health interventions, in-

cluding partial and full lockdowns, curfews, and border closures. The results from the

Poisson regression model suggest that partial lockdowns and border closures have a signif-

icant positive correlation with COVID-19 case counts, whereas full lockdowns and curfews

do not show statistically significant effects. The GLMM further emphasizes county-level

variability in responses to interventions, demonstrating the importance of region-specific

strategies rather than a one-size-fits-all approach.

The Bayesian Hierarchical Model results reveal substantial uncertainty regarding the

effectiveness of interventions, with the credible intervals for most covariates including zero.

This suggests that while some interventions may have had an impact, their effectiveness

varies significantly across different regions. Additionally, the random effects analysis

underscores the disparities between counties, with some regions experiencing significantly

higher or lower COVID-19 case counts compared to the national average.

Overall, the discussion section highlights that while certain interventions were effective

in controlling the spread of COVID-19, others may not have had the intended impact due

to regional variations and external factors. The study emphasizes the need for adaptive

and localized policy measures to better manage public health crises in diverse regions

such as Liberia.
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6 Conclusion

This study thus confirms that Bayesian Hierarchical Modeling is a powerful and flexible

tool for the modeling ofCOVID-19 transmission dynamicsin Liberia. The study found

that public health interventions, like partial lockdowns and border closures, were associ-

ated with a significant reduction in the number of daily new cases while full lockdowns

and curfews were associated with significantlyfewer new cases. The study also highlights

the significance ofspatial heterogeneity, as the effects of the interventions depended on

the county under consideration

Moreover, the study shows that models like Poisson regression, GLMM and BHM

capture the complicationof infectious disease spread. The study highlights that this is one

such demonstration, pointing out that outbreak spread is affected by regional differences

in population density, healthcare access, and common mobility patterns that must be

accounted for in future outbreak preparedness considerations.

Ultimately, the study provides valuable insights for policymakers and public health

officials in Liberia, advocating for a data-driven approach to pandemic management that

balances national and local strategies to achieve optimal health outcomes.
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