

GSJ: Volume 10, Issue 1, January 2022, Online: ISSN 2320-9186 www.globalscientificjournal.com

STATISTICALRATINGSOFLABOURPRODUCTIVITYINFLUENCINGFACTORS INTHE NIGERIA CONSTRUCTION INDUSTRY.

Oluyemi-Ayibiowu Bamitale Dorcas, Adesina Adeola Victor

Author Details (optional)

Oluyemi Bamitale Dorcas is an Associate Professor of the department of Civil Engineering in Federal University of Technolgy Akure, Nigeria. E-mail: <u>bayibiowu@yahoo.com</u>

Adesina Adeola Victor is a COREN certified construction project manager with diverse public and private infrastuructural project construction experience. E-mail: <u>victoradesina025@gmail.com</u>

KeyWords

Labour Productivity, Relative Importance Ranking, Construction, Factors, Nigeria Industry.

ABSTRACT

With a meager growth rate of 1.2 percent from 2011 to 2019, Nigerian labor productivity has remained consistently low and unsatisfactory. As a result of this, as well as other considerations, numerous construction projects in the country have been abandoned. The factors impacting labor productivity on building projects in Nigeria were ranked in this study. A questionnaire survey of 500 stakeholders in the building construction business was conducted to achieve this. Management and control (MC), Workforce (W), Material & Equipment (ME), Finance (F), Project (P), and External (E) are the six (6) key areas of labor productivity factors (E). The data from the questionnaire survey were subjected to a Pearson Correlation and Relative Importance Index test. Management and control with workfoce factors showed the strongest correlation in causing project cost overrun, management and control with finance factors for project time delay while workforce and material/equipment factors influence project quality. The scatter chart ranking result revealed that management and control elements have the greatest impact on cost overruns and project delays, while workforce has the greatest impact on project quality. This research showed that a solid management and workforce is key to consistent productivity that enhances good project performance in the Nigeria construction industry.

1.0 INTRODUCTION

The ability of a country to increase national output growth over time is almost entirely dependent on the size and productivity of its labor force (Qaisar and Foreman-Peck, 2007). The rate of increase in worker productivity in Nigeria has been disappointing (Umoru and Yaqub, 2013). Indeed, GDP per worker has fallen dramatically over time, with labor productivity in the manufacturing and construction subsectors falling by 23.59 percent and 22.53 percent, respectively, between 2011 and 2016. (National Bureau of Statistics, 2016). The country's current severe economic climate has caused productivity to plummet, resulting in a slew of issues ranging from exorbitant building costs to large differences between projected and actual development timelines, leading to project abandonment in some cases.

2.0 LITERATURE REVIEW

2.1 Labour Productivity in the Nigeria Construction Industry

A task that demands the exertion of both the body and the mind is referred to as labor. In construction, labor is also seen as a valuable resource because it is the one who brings together all of the other resources, such as materials, plant equipment, and financing, to make the various construction products as defined by (Fagbenle, 2011). Productivity, on the other hand, is a broad measure of performance that takes efficiency into account (Fagbenle, 2011). Productivity is defined as a ratio of a volume measure of output to a volume measure of input consumption by the Organization for Economic Co-operation and Development (OECD)(OECD, 2001). Productivity, according to Attar et al. (2012), is defined as the measurement of how successfully an individual entity uses available resources to produce outputs from inputs. To put it another way, productivity entails achieving the best level of performance with the least amount of resources. However, all contracting organizations must solve productivity challenges in order to obtain the full economic worth of labor. Productivity is one of the most important factors in a company's performance and market competitiveness (Mojahed et al, 2008).

The building industry is vital to the national economy because it provides infrastructure and a safe haven for other economic activities. Construction is an important sector of the national economy for countries all over the world, according to Attar et al. (2012). It employs a significant share of the country's workforce and contributes significantly to the country's overall revenue. The construction industry is one of the top five sectors used to calculate a country's National Gross Capital Formation (NGCF) and Gross Domestic Product (GDP). Its impact on all other sectors makes it a crucial frontier for long-term development (Attar et al., 2012). The Nigerian construction industry, on the other hand, continues to face numerous obstacles, including a lack of technical and man-

agement expertise, as well as a lack of financial, material, and equipment capital. Because of the usage of low-tech tools and a high number of untrained people, the construction industry is seen as a low-productivity sector. Low salaries, a lack of resources, and an unfavorable working environment were noted by Ameh and Osegbo (2011) as having a significant impact on the productivity of craftsmen employed in in-situ concrete operations in single-story building projects in Nigeria.

2.2 Factors Inflencing Construction Labour Productivity

Labor productivity is influenced by both external and internal factors in general (Durdey and Mbacchu, 2011). He divided the productivity variables into two groups: external factors, which are those that are beyond the control of the company's management, and internal factors, which are those that originate within the organization. Furthermore, because construction is an outdoor profession, weather conditions have a significant impact on its performance. Other external elements influencing task operations and productivity, in addition to the factors mentioned, are health and safety standards, as well as codes of practice. In the internal category, management shortcomings may lead to resource waste and productivity losses; adoption of current technology and laborer training, on the other hand, would boost productivity.

Low pay, a shortage of supplies, and an unfavorable working environment are all factors hurting productivity in Nigeria (Adamu et al, 2011). Non-productive or down time will result from late delivery of materials or personnel, equipment malfunctions, inadequate work plan layout, and inability to provide information). Reworks, degree of competence and experience of the personnel, suitability of method of construction, buildability concerns, and poor supervision and coordination were the restrictions having the greatest influence on productivity in New Zealand, according to Durdyev and Mbachu (2011).

2.3 Past Studies on Optimization in Construction

Kazaz et al. [2016] found 37 characteristics and divided them into four categories: organizational, economic, physical, and socio-physiological. Analyze the factor dispersion within a group as well as the compactness of each factor group. The findings revealed that the organizational factors group has the greatest weighted mean and lowest standard deviation values, making it the most significant. Raj et al. [2014] concentrated on human resource management in the sector of construction. They conduct a questionnaire study of 100 workers from various companies. In addition, the impact of human resource management strategies on the construction industry's productivity and financial performance was investigated. They found that 75% of participants agree that site

congestion causes them to work in an uncomfortable manner. Shashank et al. [2014] classified factors affecting labor productivity into six categories: motivation, manpower, material/equipment, safety, managerial, and quality. They found that the motivation component has the greatest impact on labor productivity

3.0 METHODOLOGY

3.1. Study Area

The study area selected for this research in Nigeria is Lagos State. This choice was based on the fact that the state holds a proportionate large volume of construction activities in the country and its economic viability. Figure 1 showed the map of the study area.

Figure 1: Map of the Study Area (Lagos)

3.2 Questionnaire Design

Questionnaire were used to collect supplementary data. The questionnaire consists of two (2) sections. The demographic section which contained the respondents' information and the respondent analysis section which contain the respondent responses. An Initial total of thirty-nine (39) factors that influence productivity in Nigeria construction project. The factors were grouped into six(6) groups as shown in Table 1. Each respondent was then asked to rate the extent to which each factor influence labor productivity using a given scale called **Linkert scale** of 5 responses which were

- Strongly Influence- 5
- Little Influence 4
- May or May not Influence- 3
- No influence -2

• Virtually no Influence- 1

The number represent the weights given to each decisions. These weights were used in the relative importance index analysis that followed. A total of five hundred (500) questionnaires were distributed to randomly selected respondents (contractors, consultants, site engineer, project managers, sub-contractors and client), four hundred and forty (440) valid responses were collected and analyzed quantitatively using the SPSS software.

Table 1: Labour productivity factors influencing nigeria construction project

Labor Factor		Observed Variables
Management and con- trol	MC1	Supervision, performance, monitoring and control
	MC2	Competencies of the project Manager
	MC3	Loss in productivity caused from change orders
	MC4	Lack of capability of contractor's site management to organize on-site works
	MC5	Adequacy of planning and risk management process
	MC6	Adequacy of method of construction
	MC7	Project management style
	MC8	Lack of coordination among the construction parties
	MC9	Relationship management/degree of harmony, trust, and cooper- ation
	MC10	Project Organizational Culture
Workforce	W1	Level of skill and experience of the workforce
	W2	Level of motivation of the workforce
	W3	Inadequate site staff

	W4	Level of familiarity with current job and conditions
	W5	Workforce absenteeism
	W6	Level of empowerment (training and resourcing).
	W7	Lack of training and education to implement and operate new technologies
	W8	Level of involvement of direct labor or subcontract
Finance	F1	Inadequate supply or high cost of resources: workers, materials, machinery, and money
	F2	Level of staff turnover/churn rate
	F3	Reworks because of on-site construction errors
	F4	Inflation/fluctuations in material prices
(F5	Fluctuations in exchange rate
	F6	Late payments
Project	P1	Site conditions, access, subsoil, topography, and traffic
	P2	Ground conditions necessitating revisions
	P3	Project complexity: scale and design
	P4	Poor buildability design
Material & Equipment	ME1	Lack of tool and equipment in the market
	ME2	Suitability or adequacy of the plant and equipment used
	ME3	Adequacy of technology used

	ME4	Late supply of construction materials
	ME5	Material shortage at project site
External	E1	Poor weather conditions
	E2	Slow local authority approval
	E3	Stop work order because of infringement of government regula- tion
	E4	On-site accidents/acts of God
	E5	Unrealistic deadline for project completion set by client
	E6	Client's over influence on the construction process
		\mathbf{C}

3.3 Questionnaire Analysis

The questionnaire data recovered were subjected to various statistical analyses using the IBM SPSS Statistics 2017 edition. The following were the analysis performed on the data.

3.3.1 Bi-variate Statistical Analysis

The SPSS software was also used in this research to carry out a bi-variate statistical analysis on the collected data. This statistical analysis produced the correlation results for the responses/data collected. The Correlation analysis was computed with SPSS by using the Bi-variate command as follows, Analyze \rightarrow Correlate \rightarrow Bi-variate \rightarrow coded responses \rightarrow Pearsons \rightarrow Two-tailed \rightarrow Continue \rightarrow OK.

3.3.2 Relative Importance Index Analysis

The Relative Importance Index method (RII) was used to determine the Respondents' perception of the relative importance of the causes of ineffective material management factors. The formula used for calculating the relative importance index (RII) is as follows:

Relative Important Index(R. I. I) =
$$\frac{\sum_{i=1}^{5} (a_i)(n_i)}{A \times N}$$
 (1)

This can further be written as:

Relative Important Index (R. I. I) =
$$\frac{5_{n_5} + 4_{n_4} + 3_{n_3} + 2_{n_2} + 1_{n_1}}{5N}$$
 (2)

for $(0 \le R.I.I \le 1)$

Where:

- n₄ is Number of Respondent for little influence
- n_3 is Number of Respondent for May or May not influence.
- n₂ is Number of Respondent for No influence.
- n_1 is Number of Respondent for Virtually no influence.
- N is Total number of Respondent.
- A is Highest weight (as shown in Table 3.2, where A=5)
- n is variable expressing frequency of *i*
- a_i is Constant expressing weight given to *i*th response: i = 1, 2, 3, 4, 5.

The constraints with the highest RII value were ranked first (1), the next two (2) and so on.

4.0 RESULT & DISCUSSION

A total of five hundred (500) questionnaires were administered to randomly selected participants across Lagos state in Nigeria. A total of four hundred and forty (440) responses were collected, evaluated and analyzed, representing 88% respondent rate for the research.

4.1 Roles of Respondents

Respondents were divided into four groups: contractors, site engineers, project manager and subcontractors as shown in table 2. The percentage of each roles that made up the total respondents were shown in a pie chart in figure 2.

ROLES	FREQUENCY	PERCENTAGE
Contractor	139	32%
Sub-contractor	95	22%
Site-engineer	84	19%
Project manager	102	23%
Client	20	4%

Figure 2: Pie chart representing percentages of Respondents' Role

4.2 Bi-variate analysis result of the labour productivity influening factors

Table 3 shows the inter-constraint correlation matrix for the labour productivity factors as it influences cost overrun when not properly handled. The Pearson correlation shows the strength of the correlation while the Sigmund 2-tailed shows how statistically significant, the correlation between two selected constraints were. Pearson's correlation values less than 0.50 and/or -0.50 signifies weak correlation while greater than 0.50 and/or -0.50 signifies strong correlation. However, a correlation is statistically significant if its "Sig. 2-tailed" is less than (<) 0.05.

		MC	W	F	Р	Ε	ME
Pearson	MC	1.000	0.888	0.721	0.826	0.572	0.661
correlation	W	0.888	1.000	0.679	0.773	0.552	0.715
	F	0.721	0.679	1.000	0.733	0.755	0.542
	Р	0.826	0.773	0.733	1.000	0.513	0.579
	Ε	0.572	0.552	0.755	0.503	1.000	0.507
	ME	0.661	0.715	0.542	0.579	0.507	1.00
		MC	W	F	Р	Е	ME
	MC	•	.000	.000	.000	.006	.001
Sig.	W	.000	•	.000	.000	.003	.001
(2-tailed)	F	.000	.000	•	.000	.002	.003
	Р	.000	.000	.000	•	.000	.005

Table 3: Inter-Constraint Correlation Matrix of Labor productivity factors as regards cost overrun

	Ε	.006	.003	.002	.000	•	.000
	ME	.001	.001	.003	.005	.000	•
Ν	420						

Where

MC = Management & control

W = Workforce

F = Finance

P= Project

E= External

ME= Material & Equipment

From the result, the strongest correlation occurs between the management & control and the workforce. This is feasible as the management and the control/monitoring strategy used coupled with the skills level/experience would greatly influence the efficiency of the labor-force as regards preventing total project cost overrun., hence the strong 0.888(88.8%) correlation between the two factor groups. Also, all the groups correlation are statically relevant which signifies that each groups justify its inclusion with an appreciable statistical independency.

Table 4: Inter-Condelay.	nstraint Correl	ation Matrix	of Labor	productivi	ty factors	as rega	rds project	time
		MC	W	F	Р	Е	ME	

		MC	W	F	Р	Ε	ME
Pearson	MC	1.000	0.802	0.855	0.734	0.588	0.620
correlation	W	0.802	1.000	0.679	0.789	0.600	0.720
	F	0.721	0.679	1.000	0.813	0.542	0.660
	Р	0.734	0.789	0.813	1.000	0.611	0.579
	Ε	0.588	0.600	0.542	0.611	1.000	0.512
	ME	0.620	0.720	0.660	0.579	0.512	1.00
		MC	W	F	Р	Е	ME
	MC	•	.000	.000	.000	.000	.002
Sig.	W	.000		.000	.000	.000	.002
(2-tailed)	F	.000	.000	•	.000	.001	.003
	Р	.000	.000	.000	•	.000	.000
	Е	.000	.000	.001	.000	•	.000

Ν	420	

Where

MC = Management & control

W = Workforce

F = Finance

P= Project

E= External

ME= Material & Equipment

Table 4 shows the inter-constraint correlation matrix for the labour productivity factors as it influences project time delay when not properly handled. This is feasible as the management and the control/monitoring strategy used coupled with the cash flow level and availability would greatly influence the efficiency and motivate the labor-force in preventing total project time delay., hence the strong 0.855(85.5%) correlation between the two factor groups. Also all the groups correlation are statically relevant which signifies that each groups justify its inclusion with an appreciable statistical independency.

ty.		- Andrews				1	1
		MC	W	F	Р	E	ME
Pearson	MC	1.000	0.842	0.811	0.775	0.564	0.549
correlation	W	0.842	1.000	0.764	0.773	0.617	0.848
	F	0.811	0.764	1.000	0.675	0.538	0.780
	Р	0.775	0.773	0.675	1.000	0.659	0.740
	E	0.564	0.617	0.538	0.659	1.000	0.619
	ME	0.549	0.848	0.780	0.740	0.619	1.000
		MC	W	F	Р	E	ME
	MC	•	.000	.000	.000	.001	.000
Sig.	W	.000	•	.000	.000	.001	.001
(2-tailed)	F	.000	.000	•	.000	.000	.001
	Р	.000	.000	.000	•	.000	.000
	Ε	.001	.001	.000	.000		.000
	ME	.000	.001	.001	.000	.000	•
Ν			420				

Table 5: Inter-Constraint Correlation Matrix of Labor productivity factors as regards project quali-

Where MC = Management & control W = Workforce F = Finance P= Project E= External ME= Material & Equipment

Table 5 shows the inter-constraint correlation matrix for the labour productivity factors as it influences project quality. From the result, the strongest correlation occurs between the workforce and the material & equipment. This is feasible as the skills and experience of the workers coupled with the type of materials and machine used would greatly influence the productivity of the labor-force as regards enhancing good project quality., hence the strong 0.848(84.8%) correlation between the two factor groups. Also all the groups correlation are statically relevant which signifies that each groups justify its inclusion with an appreciable statistical independency.

4.3 Ranking (Relative Important Index) Analysis Result

4.3.1 Ranking result for the Cost overruns Responses

Table 6 showed the Relative Importance Index (RII) result, the Severity index and ranking result for thirty-nine (39) cases of labor productivity influencing factors for cost overruns responses. The ranking pattern and relationship, however, were vividly showed in Figure 3.

Table 6: Labour Productivity Ranking result for cost overrun

	CONSTRAINTS									
S/N	CASES	NO OF RESPONDEN			NDE	NTS	Τ	RII	SEVERITY(I)	RANK
		n1	n2	n3	n4	n5				
1	MC1	9	20	75	110	226	1844	0.83818	83.8182	1st
2	MC2	10	40	80	100	220	1830	0.83182	83.1818	2^{nd}
3	MC4	5	25	92	108	200	1763	0.80136	80.1364	3^{rd}
4	MC8	20	36	88	160	136	1676	0.76182	76.1818	4^{th}
5	MC7	21	55	73	191	100	1614	0.73364	73.3636	5^{th}
6	MC10	25	53	73	192	97	1603	0.72864	72.8636	6^{th}
7	W1	34	65	83	106	152	1597	0.72591	72.5909	7^{th}
8	MC6	27	63	92	144	113	1570	0.71364	71.3636	8^{th}
9	W5	29	65	95	141	110	1558	0.70818	70.8182	9^{th}
10	W2	35	70	86	121	128	1557	0.70773	70.7727	10^{th}
11	MC3	38	55	95	152	100	1541	0.70045	70.0455	11^{th}
12	MC5	27	90	91	112	120	1528	0.69455	69.4545	12 th
13	W3	60	65	75	104	136	1511	0.68682	68.6818	13 th
14	MC9	55	69	71	145	100	1486	0.67545	67.5455	14^{th}
15	F1	50	85	81	105	119	1478	0.67182	67.1818	15^{th}
16	W4	38	85	107	110	100	1469	0.66773	66.7727	16^{th}
17	F3	13	103	131	110	83	1467	0.66682	66.6818	17^{th}
18	F4	53	80	101	89	117	1457	0.66227	66.2273	18^{th}
19	W8	55	75	122	91	97	1420	0.64545	64.5455	19^{th}
20	F6	58	80	100	116	86	1412	0.64182	64.1818	20^{th}
21	F5	50	95	105	100	90	1405	0.63864	63.8636	21^{st}
22	W6	56	85	103	111	85	1404	0.63818	63.8182	22^{nd}
23	W7	65	82	102	99	92	1391	0.63227	63.2273	23^{rd}
24	F2	105	65	100	54	116	1331	0.605	60.5	24^{th}
25	P1	77	93	158	65	47	1232	0.56	56	25^{th}
26	P3	65	131	145	26	73	1231	0.55955	55.9545	26^{th}
27	P2	90	121	104	65	60	1204	0.54727	54.7273	27^{th}
28	P4	106	115	73	90	56	1195	0.54318	54.3182	28^{th}
29	ME1	91	115	104	90	40	1193	0.54227	54.2273	29^{th}
30	ME2	111	105	101	55	68	1184	0.53818	53.8182	30 th
31	ME5	103	120	93	75	49	1167	0.53045	53.0455	31 st
32	ME3	122	99	95	85	39	1140	0.51818	51.8182	32^{nd}
33	E1	105	125	101	65	44	1138	0.51727	51.7273	33 rd
34	E2	82	101	195	45	17	1134	0.51545	51.5455	34^{th}
35	ME4	137	109	100	55	39	1070	0.48636	48.6364	35 th
36	E4	155	125	75	50	35	1005	0.45682	45.6818	36 th
37	E5	140	140	93	37	30	997	0.45318	45.3182	37 th

38	E6	155	116	102	40	27	988	0.44909	44.9091	38^{th}
39	E3	192	100	98	28	22	908	0.41273	41.2727	39 th

Figure 3: Scatter Chart showing the Responses Factors Ratingsfor Project Cost Overunn.

From Figure 3, management and Control factors was ranked highest influencer of labour productivity followed by the workforce and finance factors. This showed how important the level of management and the quality of the workforce is towards enhancing labor productivity to project completion at budgeted cost. This confirms the accuracy of the correlation results for cost as these two factors showed the highest correlation with one another.

The least two ranked factors were Material & Equipment and External with the latter ranked the least. This also conforms with the correlation results for cost as these two factors showed the least correlation with one another in influencing labour productivity as regards cost.

4.3.2 Ranking result for the Project Delay Responses

Table 7 showed the Relative Importance Index (RII) result, the Severity index and ranking result for thirty-nine (39) cases of labor productivity influencing factors for project delay responses. The ranking pattern and relationship, however were vividly displayed in Figure 4.

Table 7: Labour Productivity Ranking result for project delay

	CONSTRAINTS									
S/N	CASES	NO OF RESPONDENTS						RII	SEVERITY(I)	RANK
		n1	n2	n3	n4	n5				
1	MC1	19	30	85	95	211	1769	0.80409	80.4091	1st
2	MC2	22	49	89	88	202	1749	0.795	79.5	2^{nd}
3	MC3	15	35	102	98	190	1733	0.78773	78.7727	3 rd
4	MC4	20	41	113	146	120	1625	0.73864	73.8636	4^{th}
5	MC5	24	59	78	181	100	1600	0.72727	72.7273	5^{th}
6	MC8	22	73	100	95	150	1598	0.72636	72.6364	6^{th}
7	MC9	29	65	98	130	118	1563	0.71045	71.0455	7 th
8	MC10	32	66	93	119	128	1559	0.70864	70.8636	8^{th}
9	MC7	38	70	89	117	126	1543	0.70136	70.1364	9^{th}
10	F3	43	60	90	137	110	1531	0.69591	69.5909	10^{th}
11	F1	34	82	86	118	120	1528	0.69455	69.4545	11^{th}
12	F4	61	70	82	96	131	1486	0.67545	67.5455	12^{th}
13	F6	60	74	63	133	110	1479	0.67227	67.2273	13^{th}
14	F5	53	90	86	97	118	1469	0.66773	66.7727	14^{th}
15	MC6	40	85	103	112	100	1467	0.66682	66.6818	15^{th}
16	W1	18	101	127	110	84	1461	0.66409	66.4091	16^{th}
17	W2	55	82	105	84	114	1440	0.65455	65.4545	17^{th}
18	F2	53	80	108	96	103	1436	0.65273	65.2727	18^{th}
19	W5	61	82	95	113	89	1407	0.63955	63.9545	19^{th}
20	W3	54	91	102	103	90	1404	0.63818	63.8182	20^{th}
21	W6	62	87	96	108	87	1391	0.63227	63.2273	21^{st}
22	W7	67	84	97	96	96	1390	0.63182	63.1818	22^{nd}
23	P1	79	51	121	111	78	1378	0.62636	62.6364	23^{rd}
24	W4	108	68	95	57	112	1317	0.59864	59.8636	24^{th}
25	P2	80	96	146	68	50	1232	0.56	56	25^{th}
26	P4	61	126	140	30	75	1228	0.55818	55.8182	26^{th}
27	P3	93	116	99	68	64	1214	0.55182	55.1818	27^{th}

ME3	100	113	78	94	55	1211	0.55045	55.0455	28^{th}
W8	93	109	100	94	44	1207	0.54864	54.8636	29 th
E4	107	101	104	58	70	1203	0.54682	54.6818	30^{th}
E2	100	116	96	78	50	1182	0.53727	53.7273	31 st
E1	127	94	90	88	41	1142	0.51909	51.9091	32^{nd}
E3	105	127	96	68	44	1139	0.51773	51.7727	33 rd
E6	76	110	189	50	15	1138	0.51727	51.7273	34^{th}
E5	132	113	97	57	41	1082	0.49182	49.1818	35^{th}
ME4	151	131	73	48	37	1009	0.45864	45.8636	36 th
ME2	138	136	96	40	30	1008	0.45818	45.8182	37 th
ME1	151	119	99	43	28	998	0.45364	45.3636	38 th
ME5	186	103	95	31	25	926	0.42091	42.0909	39 th
	ME3 W8 E4 E2 E1 E3 E6 E5 ME4 ME2 ME1 ME5	ME3100W893E4107E2100E1127E3105E676E5132ME4151ME2138ME1151ME5186	ME3100113W893109E4107101E2100116E112794E3105127E676110E5132113ME4151131ME2138136ME1151119ME5186103	ME310011378W893109100E4107101104E210011696E11279490E310512796E676110189E513211397ME415113173ME213813696ME115111999ME518610395	ME31001137894W89310910094E410710110458E21001169678E1127949088E31051279668E67611018950E51321139757ME41511317348ME21381369640ME11511199943ME51861039531	ME3100113789455W8931091009444E41071011045870E2100116967850E112794908841E3105127966844E6761101895015E5132113975741ME4151131734837ME2138136964030ME1151119994328ME5186103953125	ME31001137894551211W89310910094441207E410710110458701203E21001169678501182E1127949088411142E31051279668441139E67611018950151138E51321139757411082ME41511317348371009ME21381369640301008ME1151119994328998ME5186103953125926	ME310011378945512110.55045W893109100944412070.54864E4107101104587012030.54682E210011696785011820.53727E11279490884111420.51909E310512796684411390.51773E676110189501511380.51727E513211397574110820.49182ME415113173483710090.45864ME11511199943289980.45364ME51861039531259260.42091	ME310011378945512110.5504555.0455W893109100944412070.5486454.8636E4107101104587012030.5468254.6818E210011696785011820.5372753.7273E11279490884111420.5190951.9091E310512796684411390.5177351.7727E676110189501511380.5172751.7273E513211397574110820.4918249.1818ME415113173483710090.4586445.8636ME11511199943289980.4536445.3636ME51861039531259260.4209142.0909

Figure 4: Scatter Chart showing the Responses Factor Ratingsfor Project Delay

From Figure 4, management and Control factors was ranked highest influencer of labour productivity followed by the finance and workforce. This showed how important the level of management and the cashflow is towards enhancing labor productivity to early project completion This also confirms the accuracy of the correlation results for project time as these two factors showed the highest correlation with one another. The least two ranked factors were Material & Equipment and External

with the former ranked the least.

4.3.3 Ranking result for the Project Quality responses

Table 8 showed the Relative Importance Index (RII) result, the Severity index and ranking result for thirty-nine (39) cases of labor productivity influencing factors for project quality responses. . The ranking pattern and relationship, however were vividly displayed in Figure 5.

CONSTRAINTS S/N CASES NO OF RESPONDENTS Т RII **SEVERITY(I)** RANK **n1** n2 n3 n4 n5 **W2** 14 27 87 96 216 1793 0.815 81.5 1 1st 2^{nd} 2 **W1** 17 45 85 88 205 1739 0.79045 79.0455 3rd 3 16 34 100 98 192 1736 0.78909 78.9091 **W4** 4^{th} 22 41 150 124 1633 0.74227 4 **W3** 103 74.2273 5th 5 24 104 1617 ME1 54 75 185 0.735 73.5 6^{th} 97 90 **W7** 20 70 153 1576 0.71636 71.6364 6 7th 25 59 101 131 121 1575 0.71591 71.5909 7 **W6** 8th 8 **W8** 35 66 92 120 128 1563 0.71045 71.0455 9th 9 **W5** 40 54 93 140 113 1552 0.70545 70.5455 10^{th} 10 ME2 35 74 88 120 123 1542 0.70091 70.0909 11^{th} ME4 57 99 132 0.68273 11 67 85 1502 68.2727 12^{th} 12 ME5 55 71 66 136 112 1499 0.68136 68.1364 13^{th} 13 ME3 50 85 89 100 120 1487 0.67591 67.5909 14^{th} 14 MC2 38 87 97 115 103 1478 0.67182 67.1818 15^{th} 15 MC4 20 91 130 113 86 1474 0.67 67 16^{th} 16 MC3 56 85 95 87 117 1444 0.65636 65.6364 17^{th} 54 83 98 99 104 1430 0.65 65 17 MC1 18^{th} 18 MC6 62 85 99 104 92 1405 0.63864 63.8636 19th 95 19 **MC7** 56 95 100 94 1396 0.63455 63.4545 20^{th} 20 **F2** 61 89 99 101 90 1390 0.63182 63.1818 21^{st} 21 F1 67 87 100 93 93 1378 0.62636 62.6364 22^{nd} 22 83 55 MC8 116 106 80 1365 0.62045 62.0455

Table 8: Labour Productivity Ranking result for project quality

23	MC9	112	72	90	52	114	1304	0.59273	59.2727	$23^{\rm rd}$
24	F3	84	100	134	73	50	1228	0.55818	55.8182	24^{th}
25	F4	66	131	125	33	78	1225	0.55682	55.6818	25^{th}
26	MC5	96	118	90	71	65	1211	0.55045	55.0455	26^{th}
27	F6	101	116	66	94	60	1207	0.54864	54.8636	27^{th}
28	MC10	93	108	107	85	47	1205	0.54773	54.7727	28^{th}
29	F5	97	111	104	85	45	1196	0.54364	54.3636	29 th
30	E2	112	106	94	56	72	1190	0.54091	54.0909	30^{th}
31	E1	104	112	90	82	52	1186	0.53909	53.9091	31 st
32	E4	130	90	86	90	44	1148	0.52182	52.1818	32^{nd}
33	E3	105	121	100	71	43	1146	0.52091	52.0909	33 rd
34	P2	81	113	162	52	17	1086	0.49364	49.3636	34^{th}
35	P1	136	110	90	61	43	1085	0.49318	49.3182	35^{th}
36	E5	155	124	70	52	39	1016	0.46182	46.1818	36^{th}
37	E6	142	130	100	36	32	1006	0.45727	45.7273	37^{th}
38	P3	156	122	90	40	31	985	0.44773	44.7727	38^{th}
39	P4	180	107	92	35	26	940	0.42727	42.7273	39 th

Figure 5: Scatter Chart showing the Responses Factor Ratingsfor Project Quality.

From Figure 5, workforce factors was ranked highest influencer of labour productivity followed by the material and equipment. This showed how important the quality of the workforce and the quality of materials and equipment is towards enhancing labor productivity to good project quality. This also confirms the accuracy of the correlation results for project quality as these two factors showed the highest correlation with one another. The least two ranked factors were External & Project with the former ranked the least.

5.0 CONCLUSION

The most ranked labour productivity factor was the management factor for both cost overrun and project delay while it was workforce for the quality. It showed how influential the level of experience of the management and the level of skills and intellect of the workforce is to ensuring and driving optimal productivity in all execution of the construction project deliverables

REFERENCES

- Adamu, K. J., Dzasu, W. E., Haruna, A., & Balla, S. K. (2011). Labor productivity constraints in the Nigerian construction industry. *Continental Journal of Environmental Design and Management*, 2(1), 9-13.
- Ameh, O. J., & Osegbo, E. E. (2011). Study of Relationship Between Time Overrun and Productivity on Construction Sites". *International Journal of Construction Supply Chain Management*, 1, 56-67.
- Attar, A. A., Gupta, A. K., & Desai, D. B. (2012). A Study of Various Factors Affecting Labour Productivity and Methods to Improve It. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 11-14.
- Durdyev, S., & Mbachu, J. (2011). On-site labor productivity of New Zealand construction industry: Key constraints and improvement measures. J. Constr. Econ. Build., 11(3), 18-33.
- Fagbenle, O. I., Ogunde, A. O., & Owolabi, J. D. (2011). Factors affecting the performance of labour in Nigerian construction sites. . *Mediterranean Centre of Social and Educational Research Journal*, 251-257.
- Kazaz, A., Ulubeyli, S., Acikara, T., & Bayram, E. R. (2016). Factors Affecting Labor
 Productivity: Perspectives of Craft Workers. *Elsevier Ltd., Procedia Engineering, 164*, 28-34.

- Mahmoud, M. A. (2012). 'A Construction Resources Management System for Gaza Strip Contractors'. *IJSERT*, 100-110.
- Mojahed, S., & Aghazadeh, F. (2008). Major factors influencing productivity of water and wastewater treatment plant construction: Evidence from the Deep South USA. *Int. J. Project Manage.*, 26(2), 195-202.
- OECD (2001). Measuring productivity OECD Manual Measurement of Aggregate and Industrylevel Growth. Organisation for Economic Co-operation and Development, France.
- Olomolaiye, P. O., Wahab, K., & Price , A. (1997). Problems influencing craftsman productivity in Nigeria. *Building Environment*, 22(4), 317-323.
- Qaisar, A., & Foreman-Peck. (2007). *Human Capital and Economic Growth*. Pakistan: NRPU Projects.
- Raj, B. V., Anthony, & Kothai, P. S. (2014). Improving the Labour Productivity through Other Resources in Construction Field. *International Journal of Engineering Research and General Science, ISSN: 20912730, Volume 2, Issue 2,, 2*(2), 205-213.
- Shashank, K., Sutapa, H., & Kabindra, N. P. (2014). Analysis of Key Factors Affecting the Variation of Labour Productivity in Construction Projects. *International Journal of Emerging Technology and Advanced Engineering(IJETAE)*, 4(5), 152-160.
- National Bureau of Statistics. (2016). *Nigerian Construction Sector: Summary Report 2010 -2012*. Abuja: NBS Office.
- Umoru, D., & Yaqub, O. (2013). Labour productivity and health capital in Nigeria: The empirical evidence. *International Journal of Humanities and Social Science*, 199-221.